The Stacks project

Lemma 65.5.6. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $F, G, H : (\mathit{Sch}/S)_{fppf}^{opp} \to \textit{Sets}$. Let $\mathcal{P}$ be a property as in Definition 65.5.1. Let $a : F \to G$ be a representable transformations of functors. Let $b : H \to G$ be any transformation of functors. Consider the fibre product diagram

\[ \xymatrix{ H \times _{b, G, a} F \ar[r]_-{b'} \ar[d]_{a'} & F \ar[d]^ a \\ H \ar[r]^ b & G } \]

Assume that $b$ induces a surjective map of fppf sheaves $H^\# \to G^\# $. In this case, if $a'$ has property $\mathcal{P}$, then also $a$ has property $\mathcal{P}$.

Proof. First we remark that by Lemma 65.3.3 the transformation $a'$ is representable. Let $U \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf})$, and let $\xi \in G(U)$. By assumption there exists an fppf covering $\{ U_ i \to U\} _{i \in I}$ and elements $\xi _ i \in H(U_ i)$ mapping to $\xi |_ U$ via $b$. From general category theory it follows that for each $i$ we have a fibre product diagram

\[ \xymatrix{ U_ i \times _{\xi _ i, H, a'} (H \times _{b, G, a} F) \ar[r] \ar[d] & U \times _{\xi , G, a} F \ar[d] \\ U_ i \ar[r] & U } \]

By assumption the left vertical arrow is a morphism of schemes which has property $\mathcal{P}$. Since $\mathcal{P}$ is local in the fppf topology this implies that also the right vertical arrow has property $\mathcal{P}$ as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03KD. Beware of the difference between the letter 'O' and the digit '0'.