The Stacks project

Example 65.14.8. Let $k$ be a field of characteristic zero. Let $U = \mathbf{A}^1_ k$ and let $G = \mathbf{Z}$. As action we take $n(x) = x + n$, i.e., the action of $\mathbf{Z}$ on the affine line by translation. The only fixed point is the generic point and it is clearly the case that $\mathbf{Z}$ injects into the automorphism group of the field $k(x)$. (This is where we use the characteristic zero assumption.) Consider the morphism

\[ \gamma : \mathop{\mathrm{Spec}}(k(x)) \longrightarrow X = \mathbf{A}^1_ k/\mathbf{Z} \]

of the generic point of the affine line into the quotient. We claim that this morphism does not factor through any monomorphism $\mathop{\mathrm{Spec}}(L) \to X$ of the spectrum of a field to $X$. (Contrary to what happens for schemes, see Schemes, Section 26.13.) In fact, since $\mathbf{Z}$ does not have any nontrivial finite subgroups we see from Lemma 65.14.6 that for any such factorization $k(x) = L$. Finally, $\gamma $ is not a monomorphism since

\[ \mathop{\mathrm{Spec}}(k(x)) \times _{\gamma , X, \gamma } \mathop{\mathrm{Spec}}(k(x)) \cong \mathop{\mathrm{Spec}}(k(x)) \times \mathbf{Z}. \]

Comments (0)

There are also:

  • 9 comment(s) on Section 65.14: Examples of algebraic spaces

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02Z7. Beware of the difference between the letter 'O' and the digit '0'.