Lemma 10.161.8. Let $R$ be a Noetherian normal domain with fraction field $K$. Let $L/K$ be a finite separable field extension. Then the integral closure of $R$ in $L$ is finite over $R$.

**Proof.**
Consider the trace pairing (Fields, Definition 9.20.6)

Since $L/K$ is separable this is nondegenerate (Fields, Lemma 9.20.7). Moreover, if $x \in L$ is integral over $R$, then $\text{Trace}_{L/K}(x)$ is in $R$. This is true because the minimal polynomial of $x$ over $K$ has coefficients in $R$ (Lemma 10.38.6) and because $\text{Trace}_{L/K}(x)$ is an integer multiple of one of these coefficients (Fields, Lemma 9.20.3). Pick $x_1, \ldots , x_ n \in L$ which are integral over $R$ and which form a $K$-basis of $L$. Then the integral closure $S \subset L$ is contained in the $R$-module

By linear algebra we see that $M \cong R^{\oplus n}$ as an $R$-module. Hence $S \subset R^{\oplus n}$ is a finitely generated $R$-module as $R$ is Noetherian. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (6)

Comment #5007 by Laurent Moret-Bailly on

Comment #5246 by Johan on

Comment #5253 by Laurent Moret-Bailly on

Comment #7426 by Jianing Li on

Comment #7439 by Zhiyu Z on

Comment #7445 by Jianing Li on

There are also: