The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 10.155.8. Let $R$ be a Noetherian normal domain with fraction field $K$. Let $K \subset L$ be a finite separable field extension. Then the integral closure of $R$ in $L$ is finite over $R$.

Proof. Consider the trace pairing (Fields, Definition 9.20.6)

\[ L \times L \longrightarrow K, \quad (x, y) \longmapsto \langle x, y\rangle := \text{Trace}_{L/K}(xy). \]

Since $L/K$ is separable this is nondegenerate (Fields, Lemma 9.20.7). Moreover, if $x \in L$ is integral over $R$, then $\text{Trace}_{L/K}(x)$ is in $R$. This is true because the minimal polynomial of $x$ over $K$ has coefficients in $R$ (Lemma 10.37.6) and because $\text{Trace}_{L/K}(x)$ is an integer multiple of one of these coefficients (Fields, Lemma 9.20.3). Pick $x_1, \ldots , x_ n \in L$ which are integral over $R$ and which form a $K$-basis of $L$. Then the integral closure $S \subset L$ is contained in the $R$-module

\[ M = \{ y \in L \mid \langle x_ i, y\rangle \in R, \ i = 1, \ldots , n\} \]

By linear algebra we see that $M \cong R^{\oplus n}$ as an $R$-module. Hence $S \subset R^{\oplus n}$ is a finitely generated $R$-module as $R$ is Noetherian. $\square$

Comments (0)

There are also:

  • 3 comment(s) on Section 10.155: Japanese rings

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 032L. Beware of the difference between the letter 'O' and the digit '0'.