Lemma 21.10.2. Let \mathcal{C} be a site. Let \mathcal{U} = \{ U_ i \to U\} _{i \in I} be a covering of \mathcal{C}. Let \mathcal{I} be an injective abelian sheaf, i.e., an injective object of \textit{Ab}(\mathcal{C}). Then
\check{H}^ p(\mathcal{U}, \mathcal{I}) = \left\{ \begin{matrix} \mathcal{I}(U)
& \text{if}
& p = 0
\\ 0
& \text{if}
& p > 0
\end{matrix} \right.
Proof. By Lemma 21.10.1 we see that \mathcal{I} is an injective object in \textit{PAb}(\mathcal{C}). Hence we can apply Lemma 21.9.6 (or its proof) to see the vanishing of higher Čech cohomology group. For the zeroth see Lemma 21.8.2. \square
Comments (0)