21.5 First cohomology and extensions
Lemma 21.5.1. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let \mathcal{F} be a sheaf of \mathcal{O}-modules on \mathcal{C}. There is a canonical bijection
\mathop{\mathrm{Ext}}\nolimits ^1_{\textit{Mod}(\mathcal{O})}(\mathcal{O}, \mathcal{F}) \longrightarrow H^1(\mathcal{C}, \mathcal{F})
which associates to the extension
0 \to \mathcal{F} \to \mathcal{E} \to \mathcal{O} \to 0
the image of 1 \in \Gamma (\mathcal{C}, \mathcal{O}) in H^1(\mathcal{C}, \mathcal{F}).
Proof.
Let us construct the inverse of the map given in the lemma. Let \xi \in H^1(\mathcal{C}, \mathcal{F}). Choose an injection \mathcal{F} \subset \mathcal{I} with \mathcal{I} injective in \textit{Mod}(\mathcal{O}). Set \mathcal{Q} = \mathcal{I}/\mathcal{F}. By the long exact sequence of cohomology, we see that \xi is the image of a section \tilde\xi \in \Gamma (\mathcal{C}, \mathcal{Q}) = \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{O}, \mathcal{Q}). Now, we just form the pullback
\xymatrix{ 0 \ar[r] & \mathcal{F} \ar[r] \ar@{=}[d] & \mathcal{E} \ar[r] \ar[d] & \mathcal{O} \ar[r] \ar[d]^{\tilde\xi } & 0 \\ 0 \ar[r] & \mathcal{F} \ar[r] & \mathcal{I} \ar[r] & \mathcal{Q} \ar[r] & 0 }
see Homology, Section 12.6.
\square
The following lemma will be superseded by the more general Lemma 21.12.4.
Lemma 21.5.2. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let \mathcal{F} be a sheaf of \mathcal{O}-modules on \mathcal{C}. Let \mathcal{F}_{ab} denote the underlying sheaf of abelian groups. Then there is a functorial isomorphism
H^1(\mathcal{C}, \mathcal{F}_{ab}) = H^1(\mathcal{C}, \mathcal{F})
where the left hand side is cohomology computed in \textit{Ab}(\mathcal{C}) and the right hand side is cohomology computed in \textit{Mod}(\mathcal{O}).
Proof.
Let \underline{\mathbf{Z}} denote the constant sheaf \mathbf{Z}. As \textit{Ab}(\mathcal{C}) = \textit{Mod}(\underline{\mathbf{Z}}) we may apply Lemma 21.5.1 twice, and it follows that we have to show
\mathop{\mathrm{Ext}}\nolimits ^1_{\textit{Mod}(\mathcal{O})}(\mathcal{O}, \mathcal{F}) = \mathop{\mathrm{Ext}}\nolimits ^1_{\textit{Mod}(\underline{\mathbf{Z}})}( \underline{\mathbf{Z}}, \mathcal{F}_{ab}).
Suppose that 0 \to \mathcal{F} \to \mathcal{E} \to \mathcal{O} \to 0 is an extension in \textit{Mod}(\mathcal{O}). Then we can use the obvious map of abelian sheaves 1 : \underline{\mathbf{Z}} \to \mathcal{O} and pullback to obtain an extension \mathcal{E}_{ab}, like so:
\xymatrix{ 0 \ar[r] & \mathcal{F}_{ab} \ar[r] \ar@{=}[d] & \mathcal{E}_{ab} \ar[r] \ar[d] & \underline{\mathbf{Z}} \ar[r] \ar[d]^{1} & 0 \\ 0 \ar[r] & \mathcal{F} \ar[r] & \mathcal{E} \ar[r] & \mathcal{O} \ar[r] & 0 }
The converse is a little more fun. Suppose that 0 \to \mathcal{F}_{ab} \to \mathcal{E}_{ab} \to \underline{\mathbf{Z}} \to 0 is an extension in \textit{Mod}(\underline{\mathbf{Z}}). Since \underline{\mathbf{Z}} is a flat \underline{\mathbf{Z}}-module we see that the sequence
0 \to \mathcal{F}_{ab} \otimes _{\underline{\mathbf{Z}}} \mathcal{O} \to \mathcal{E}_{ab} \otimes _{\underline{\mathbf{Z}}} \mathcal{O} \to \underline{\mathbf{Z}} \otimes _{\underline{\mathbf{Z}}} \mathcal{O} \to 0
is exact, see Modules on Sites, Lemma 18.28.9. Of course \underline{\mathbf{Z}} \otimes _{\underline{\mathbf{Z}}} \mathcal{O} = \mathcal{O}. Hence we can form the pushout via the (\mathcal{O}-linear) multiplication map \mu : \mathcal{F} \otimes _{\underline{\mathbf{Z}}} \mathcal{O} \to \mathcal{F} to get an extension of \mathcal{O} by \mathcal{F}, like this
\xymatrix{ 0 \ar[r] & \mathcal{F}_{ab} \otimes _{\underline{\mathbf{Z}}} \mathcal{O} \ar[r] \ar[d]^\mu & \mathcal{E}_{ab} \otimes _{\underline{\mathbf{Z}}} \mathcal{O} \ar[r] \ar[d] & \mathcal{O} \ar[r] \ar@{=}[d] & 0 \\ 0 \ar[r] & \mathcal{F} \ar[r] & \mathcal{E} \ar[r] & \mathcal{O} \ar[r] & 0 }
which is the desired extension. We omit the verification that these constructions are mutually inverse.
\square
Comments (0)