## Tag `03AG`

## 21.5. First cohomology and torsors

Definition 21.5.1. Let $\mathcal{C}$ be a site. Let $\mathcal{G}$ be a sheaf of (possibly non-commutative) groups on $\mathcal{C}$. A

pseudo torsor, or more precisely apseudo $\mathcal{G}$-torsor, is a sheaf of sets $\mathcal{F}$ on $\mathcal{C}$ endowed with an action $\mathcal{G} \times \mathcal{F} \to \mathcal{F}$ such that

- whenever $\mathcal{F}(U)$ is nonempty the action $\mathcal{G}(U) \times \mathcal{F}(U) \to \mathcal{F}(U)$ is simply transitive.
A

morphism of pseudo $\mathcal{G}$-torsors$\mathcal{F} \to \mathcal{F}'$ is simply a morphism of sheaves of sets compatible with the $\mathcal{G}$-actions. Atorsor, or more precisely a$\mathcal{G}$-torsor, is a pseudo $\mathcal{G}$-torsor such that in addition

- (2) for every $U \in \mathop{\rm Ob}\nolimits(\mathcal{C})$ there exists a covering $\{U_i \to U\}_{i \in I}$ of $U$ such that $\mathcal{F}(U_i)$ is nonempty for all $i \in I$.
A

morphism of $\mathcal{G}$-torsorsis simply a morphism of pseudo $\mathcal{G}$-torsors. Thetrivial $\mathcal{G}$-torsoris the sheaf $\mathcal{G}$ endowed with the obvious left $\mathcal{G}$-action.It is clear that a morphism of torsors is automatically an isomorphism.

Lemma 21.5.2. Let $\mathcal{C}$ be a site. Let $\mathcal{G}$ be a sheaf of (possibly non-commutative) groups on $\mathcal{C}$. A $\mathcal{G}$-torsor $\mathcal{F}$ is trivial if and only if $\Gamma(\mathcal{C}, \mathcal{F}) \not = \emptyset$.

Proof.Omitted. $\square$Lemma 21.5.3. Let $\mathcal{C}$ be a site. Let $\mathcal{H}$ be an abelian sheaf on $\mathcal{C}$. There is a canonical bijection between the set of isomorphism classes of $\mathcal{H}$-torsors and $H^1(\mathcal{C}, \mathcal{H})$.

Proof.Let $\mathcal{F}$ be a $\mathcal{H}$-torsor. Consider the free abelian sheaf $\mathbf{Z}[\mathcal{F}]$ on $\mathcal{F}$. It is the sheafification of the rule which associates to $U \in \mathop{\rm Ob}\nolimits(\mathcal{C})$ the collection of finite formal sums $\sum n_i[s_i]$ with $n_i \in \mathbf{Z}$ and $s_i \in \mathcal{F}(U)$. There is a natural map $$ \sigma : \mathbf{Z}[\mathcal{F}] \longrightarrow \underline{\mathbf{Z}} $$ which to a local section $\sum n_i[s_i]$ associates $\sum n_i$. The kernel of $\sigma$ is generated by sections of the form $[s] - [s']$. There is a canonical map $a : \mathop{\rm Ker}(\sigma) \to \mathcal{H}$ which maps $[s] - [s'] \mapsto h$ where $h$ is the local section of $\mathcal{H}$ such that $h \cdot s = s'$. Consider the pushout diagram $$ \xymatrix{ 0 \ar[r] & \mathop{\rm Ker}(\sigma) \ar[r] \ar[d]^a & \mathbf{Z}[\mathcal{F}] \ar[r] \ar[d] & \underline{\mathbf{Z}} \ar[r] \ar[d] & 0 \\ 0 \ar[r] & \mathcal{H} \ar[r] & \mathcal{E} \ar[r] & \underline{\mathbf{Z}} \ar[r] & 0 } $$ Here $\mathcal{E}$ is the extension obtained by pushout. From the long exact cohomology sequence associated to the lower short exact sequence we obtain an element $\xi = \xi_\mathcal{F} \in H^1(\mathcal{C}, \mathcal{H})$ by applying the boundary operator to $1 \in H^0(\mathcal{C}, \underline{\mathbf{Z}})$.Conversely, given $\xi \in H^1(\mathcal{C}, \mathcal{H})$ we can associate to $\xi$ a torsor as follows. Choose an embedding $\mathcal{H} \to \mathcal{I}$ of $\mathcal{H}$ into an injective abelian sheaf $\mathcal{I}$. We set $\mathcal{Q} = \mathcal{I}/\mathcal{H}$ so that we have a short exact sequence $$ \xymatrix{ 0 \ar[r] & \mathcal{H} \ar[r] & \mathcal{I} \ar[r] & \mathcal{Q} \ar[r] & 0 } $$ The element $\xi$ is the image of a global section $q \in H^0(\mathcal{C}, \mathcal{Q})$ because $H^1(\mathcal{C}, \mathcal{I}) = 0$ (see Derived Categories, Lemma 13.20.4). Let $\mathcal{F} \subset \mathcal{I}$ be the subsheaf (of sets) of sections that map to $q$ in the sheaf $\mathcal{Q}$. It is easy to verify that $\mathcal{F}$ is a $\mathcal{H}$-torsor.

We omit the verification that the two constructions given above are mutually inverse. $\square$

The code snippet corresponding to this tag is a part of the file `sites-cohomology.tex` and is located in lines 261–390 (see updates for more information).

```
\section{First cohomology and torsors}
\label{section-h1-torsors}
\begin{definition}
\label{definition-torsor}
Let $\mathcal{C}$ be a site.
Let $\mathcal{G}$ be a sheaf of (possibly non-commutative)
groups on $\mathcal{C}$.
A {\it pseudo torsor}, or more precisely a
{\it pseudo $\mathcal{G}$-torsor}, is a sheaf
of sets $\mathcal{F}$ on $\mathcal{C}$ endowed with an action
$\mathcal{G} \times \mathcal{F} \to \mathcal{F}$ such that
\begin{enumerate}
\item whenever $\mathcal{F}(U)$ is nonempty the action
$\mathcal{G}(U) \times \mathcal{F}(U) \to \mathcal{F}(U)$
is simply transitive.
\end{enumerate}
A {\it morphism of pseudo $\mathcal{G}$-torsors}
$\mathcal{F} \to \mathcal{F}'$
is simply a morphism of sheaves of sets compatible with the
$\mathcal{G}$-actions.
A {\it torsor}, or more precisely a
{\it $\mathcal{G}$-torsor}, is a pseudo $\mathcal{G}$-torsor such that
in addition
\begin{enumerate}
\item[(2)] for every $U \in \Ob(\mathcal{C})$
there exists a covering $\{U_i \to U\}_{i \in I}$ of $U$
such that $\mathcal{F}(U_i)$ is nonempty for all $i \in I$.
\end{enumerate}
A {\it morphism of $\mathcal{G}$-torsors} is simply a morphism of
pseudo $\mathcal{G}$-torsors.
The {\it trivial $\mathcal{G}$-torsor}
is the sheaf $\mathcal{G}$ endowed with the obvious left
$\mathcal{G}$-action.
\end{definition}
\noindent
It is clear that a morphism of torsors is automatically an isomorphism.
\begin{lemma}
\label{lemma-trivial-torsor}
Let $\mathcal{C}$ be a site.
Let $\mathcal{G}$ be a sheaf of (possibly non-commutative)
groups on $\mathcal{C}$.
A $\mathcal{G}$-torsor $\mathcal{F}$ is trivial if and only if
$\Gamma(\mathcal{C}, \mathcal{F}) \not = \emptyset$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-torsors-h1}
Let $\mathcal{C}$ be a site.
Let $\mathcal{H}$ be an abelian sheaf on $\mathcal{C}$.
There is a canonical bijection between the set of isomorphism
classes of $\mathcal{H}$-torsors and $H^1(\mathcal{C}, \mathcal{H})$.
\end{lemma}
\begin{proof}
Let $\mathcal{F}$ be a $\mathcal{H}$-torsor.
Consider the free abelian sheaf $\mathbf{Z}[\mathcal{F}]$
on $\mathcal{F}$. It is the sheafification of the rule
which associates to $U \in \Ob(\mathcal{C})$ the collection of finite
formal sums $\sum n_i[s_i]$ with $n_i \in \mathbf{Z}$
and $s_i \in \mathcal{F}(U)$. There is a natural map
$$
\sigma : \mathbf{Z}[\mathcal{F}] \longrightarrow \underline{\mathbf{Z}}
$$
which to a local section $\sum n_i[s_i]$ associates $\sum n_i$.
The kernel of $\sigma$ is generated by sections of the form
$[s] - [s']$. There is a canonical map
$a : \Ker(\sigma) \to \mathcal{H}$
which maps $[s] - [s'] \mapsto h$ where $h$ is the local section of
$\mathcal{H}$ such that $h \cdot s = s'$. Consider the pushout diagram
$$
\xymatrix{
0 \ar[r] &
\Ker(\sigma) \ar[r] \ar[d]^a &
\mathbf{Z}[\mathcal{F}] \ar[r] \ar[d] &
\underline{\mathbf{Z}} \ar[r] \ar[d] &
0 \\
0 \ar[r] &
\mathcal{H} \ar[r] &
\mathcal{E} \ar[r] &
\underline{\mathbf{Z}} \ar[r] &
0
}
$$
Here $\mathcal{E}$ is the extension obtained by pushout.
From the long exact cohomology sequence associated to the lower
short exact sequence we obtain an element
$\xi = \xi_\mathcal{F} \in H^1(\mathcal{C}, \mathcal{H})$
by applying the boundary operator to
$1 \in H^0(\mathcal{C}, \underline{\mathbf{Z}})$.
\medskip\noindent
Conversely, given $\xi \in H^1(\mathcal{C}, \mathcal{H})$ we can associate to
$\xi$ a torsor as follows. Choose an embedding $\mathcal{H} \to \mathcal{I}$
of $\mathcal{H}$ into an injective abelian sheaf $\mathcal{I}$. We set
$\mathcal{Q} = \mathcal{I}/\mathcal{H}$ so that we have a short exact
sequence
$$
\xymatrix{
0 \ar[r] &
\mathcal{H} \ar[r] &
\mathcal{I} \ar[r] &
\mathcal{Q} \ar[r] &
0
}
$$
The element $\xi$ is the image of a global section
$q \in H^0(\mathcal{C}, \mathcal{Q})$
because $H^1(\mathcal{C}, \mathcal{I}) = 0$ (see
Derived Categories, Lemma \ref{derived-lemma-higher-derived-functors}).
Let $\mathcal{F} \subset \mathcal{I}$ be the subsheaf (of sets) of sections
that map to $q$ in the sheaf $\mathcal{Q}$. It is easy to verify that
$\mathcal{F}$ is a $\mathcal{H}$-torsor.
\medskip\noindent
We omit the verification that the two constructions given
above are mutually inverse.
\end{proof}
```

## Comments (2)

## Add a comment on tag `03AG`

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

All contributions are licensed under the GNU Free Documentation License.