The Stacks project

Lemma 68.7.1. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $U \to X$ be an étale morphism from a scheme to $X$. Assume $u, u' \in |U|$ map to the same point $x$ of $|X|$, and $u' \leadsto u$. If the pair $(X, x)$ satisfies the equivalent conditions of Lemma 68.4.2 then $u = u'$.

Proof. Assume the pair $(X, x)$ satisfies the equivalent conditions for Lemma 68.4.2. Let $U$ be a scheme, $U \to X$ étale, and let $u, u' \in |U|$ map to $x$ of $|X|$, and $u' \leadsto u$. We may and do replace $U$ by an affine neighbourhood of $u$. Let $t, s : R = U \times _ X U \to U$ be the étale projection maps.

Pick a point $r \in R$ with $t(r) = u$ and $s(r) = u'$. This is possible by Properties of Spaces, Lemma 66.4.5. Because generalizations lift along the étale morphism $t$ (Remark 68.4.1) we can find a specialization $r' \leadsto r$ with $t(r') = u'$. Set $u'' = s(r')$. Then $u'' \leadsto u'$. Thus we may repeat and find $r'' \leadsto r'$ with $t(r'') = u''$. Set $u''' = s(r'')$, and so on. Here is a picture:

\[ \xymatrix{ & r'' \ar[rd]^ s \ar[ld]_ t \ar@{~>}[d] & \\ u'' \ar@{~>}[d] & r' \ar[rd]^ s \ar[ld]_ t \ar@{~>}[d] & u''' \ar@{~>}[d] \\ u' \ar@{~>}[d] & r \ar[rd]^ s \ar[ld]_ t & u'' \ar@{~>}[d] \\ u & & u' } \]

In Remark 68.4.1 we have seen that there are no specializations among points in the fibres of the étale morphism $s$. Hence if $u^{(n + 1)} = u^{(n)}$ for some $n$, then also $r^{(n)} = r^{(n - 1)}$ and hence also (by taking $t$) $u^{(n)} = u^{(n - 1)}$. This then forces the whole tower to collapse, in particular $u = u'$. Thus we see that if $u \not= u'$, then all the specializations are strict and $\{ u, u', u'', \ldots \} $ is an infinite set of points in $U$ which map to the point $x$ in $|X|$. As we chose $U$ affine this contradicts the second part of Lemma 68.4.2, as desired. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 68.7: Points and specializations

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03IM. Beware of the difference between the letter 'O' and the digit '0'.