The Stacks project

Definition 67.41.1. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. We say $f$ satisfies the uniqueness part of the valuative criterion if given any commutative solid diagram

\[ \xymatrix{ \mathop{\mathrm{Spec}}(K) \ar[r] \ar[d] & X \ar[d] \\ \mathop{\mathrm{Spec}}(A) \ar[r] \ar@{-->}[ru] & Y } \]

where $A$ is a valuation ring with field of fractions $K$, there exists at most one dotted arrow (without requiring existence). We say $f$ satisfies the existence part of the valuative criterion if given any solid diagram as above there exists an extension $K'/K$ of fields, a valuation ring $A' \subset K'$ dominating $A$ and a morphism $\mathop{\mathrm{Spec}}(A') \to X$ such that the following diagram commutes

\[ \xymatrix{ \mathop{\mathrm{Spec}}(K') \ar[r] \ar[d] & \mathop{\mathrm{Spec}}(K) \ar[r] & X \ar[d] \\ \mathop{\mathrm{Spec}}(A') \ar[r] \ar[rru] & \mathop{\mathrm{Spec}}(A) \ar[r] & Y } \]

We say $f$ satisfies the valuative criterion if $f$ satisfies both the existence and uniqueness part.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03IX. Beware of the difference between the letter 'O' and the digit '0'.