The Stacks project

Remark 67.17.10. An informal description of the properties $(\beta )$, decent, reasonable, very reasonable was given in Section 67.6. A morphism has one of these properties if (very) loosely speaking the fibres of the morphism have the corresponding properties. Being decent is useful to prove things about specializations of points on $|X|$. Being reasonable is a bit stronger and technically quite easy to work with.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03L4. Beware of the difference between the letter 'O' and the digit '0'.