Lemma 67.5.3. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. The following are equivalent:

1. $f$ is surjective,

2. for every scheme $Z$ and any morphism $Z \to Y$ the morphism $Z \times _ Y X \to Z$ is surjective,

3. for every affine scheme $Z$ and any morphism $Z \to Y$ the morphism $Z \times _ Y X \to Z$ is surjective,

4. there exists a scheme $V$ and a surjective étale morphism $V \to Y$ such that $V \times _ Y X \to V$ is a surjective morphism,

5. there exists a scheme $U$ and a surjective étale morphism $\varphi : U \to X$ such that the composition $f \circ \varphi$ is surjective,

6. there exists a commutative diagram

$\xymatrix{ U \ar[d] \ar[r] & V \ar[d] \\ X \ar[r] & Y }$

where $U$, $V$ are schemes and the vertical arrows are surjective étale such that the top horizontal arrow is surjective, and

7. there exists a Zariski covering $Y = \bigcup Y_ i$ such that each of the morphisms $f^{-1}(Y_ i) \to Y_ i$ is surjective.

Proof. Omitted. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).