Lemma 66.30.5. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. The following are equivalent:

$f$ is flat,

for every $x \in |X|$ the morphism $f$ is flat at $x$,

for every scheme $Z$ and any morphism $Z \to Y$ the morphism $Z \times _ Y X \to Z$ is flat,

for every affine scheme $Z$ and any morphism $Z \to Y$ the morphism $Z \times _ Y X \to Z$ is flat,

there exists a scheme $V$ and a surjective étale morphism $V \to Y$ such that $V \times _ Y X \to V$ is flat,

there exists a scheme $U$ and a surjective étale morphism $\varphi : U \to X$ such that the composition $f \circ \varphi $ is flat,

for every commutative diagram

\[ \xymatrix{ U \ar[d] \ar[r] & V \ar[d] \\ X \ar[r] & Y } \]where $U$, $V$ are schemes and the vertical arrows are étale the top horizontal arrow is flat,

there exists a commutative diagram

\[ \xymatrix{ U \ar[d] \ar[r] & V \ar[d] \\ X \ar[r] & Y } \]where $U$, $V$ are schemes, the vertical arrows are étale, and $U \to X$ is surjective such that the top horizontal arrow is flat, and

there exists a Zariski coverings $Y = \bigcup Y_ i$ and $f^{-1}(Y_ i) = \bigcup X_{ij}$ such that each morphism $X_{ij} \to Y_ i$ is flat.

## Comments (1)

Comment #992 by Johan Commelin on

There are also: