Definition 67.19.3. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. We say $f$ is universally injective if for every morphism $Y' \to Y$ the induced map $|Y' \times _ Y X| \to |Y'|$ is injective.
Definition 67.19.3. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. We say $f$ is universally injective if for every morphism $Y' \to Y$ the induced map $|Y' \times _ Y X| \to |Y'|$ is injective.
Comments (0)