Processing math: 100%

The Stacks project

Definition 59.16.1. Let \mathcal{U} = \{ t_ i : T_ i \to T\} _{i \in I} be a family of morphisms of schemes with fixed target. A descent datum for quasi-coherent sheaves with respect to \mathcal{U} is a collection ((\mathcal{F}_ i)_{i \in I}, (\varphi _{ij})_{i, j \in I}) where

  1. \mathcal{F}_ i is a quasi-coherent sheaf on T_ i, and

  2. \varphi _{ij} : \text{pr}_0^* \mathcal{F}_ i \to \text{pr}_1^* \mathcal{F}_ j is an isomorphism of modules on T_ i \times _ T T_ j,

such that the cocycle condition holds: the diagrams

\xymatrix{ \text{pr}_0^*\mathcal{F}_ i \ar[dr]_{\text{pr}_{02}^*\varphi _{ik}} \ar[rr]^{\text{pr}_{01}^*\varphi _{ij}} & & \text{pr}_1^*\mathcal{F}_ j \ar[dl]^{\text{pr}_{12}^*\varphi _{jk}} \\ & \text{pr}_2^*\mathcal{F}_ k }

commute on T_ i \times _ T T_ j \times _ T T_ k. This descent datum is called effective if there exist a quasi-coherent sheaf \mathcal{F} over T and \mathcal{O}_{T_ i}-module isomorphisms \varphi _ i : t_ i^* \mathcal{F} \cong \mathcal{F}_ i compatible with the maps \varphi _{ij}, namely

\varphi _{ij} = \text{pr}_1^* (\varphi _ j) \circ \text{pr}_0^* (\varphi _ i)^{-1}.

Comments (0)

There are also:

  • 2 comment(s) on Section 59.16: Faithfully flat descent

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.