Definition 59.16.1. Let \mathcal{U} = \{ t_ i : T_ i \to T\} _{i \in I} be a family of morphisms of schemes with fixed target. A descent datum for quasi-coherent sheaves with respect to \mathcal{U} is a collection ((\mathcal{F}_ i)_{i \in I}, (\varphi _{ij})_{i, j \in I}) where
\mathcal{F}_ i is a quasi-coherent sheaf on T_ i, and
\varphi _{ij} : \text{pr}_0^* \mathcal{F}_ i \to \text{pr}_1^* \mathcal{F}_ j is an isomorphism of modules on T_ i \times _ T T_ j,
such that the cocycle condition holds: the diagrams
commute on T_ i \times _ T T_ j \times _ T T_ k. This descent datum is called effective if there exist a quasi-coherent sheaf \mathcal{F} over T and \mathcal{O}_{T_ i}-module isomorphisms \varphi _ i : t_ i^* \mathcal{F} \cong \mathcal{F}_ i compatible with the maps \varphi _{ij}, namely
Comments (0)
There are also: