The Stacks project

Definition 59.36.1. Let $f: X\to Y$ be a morphism of schemes. The inverse image, or pullback1 functors are the functors

\[ f^{-1} = f_{small}^{-1} : \mathop{\mathit{Sh}}\nolimits (Y_{\acute{e}tale}) \longrightarrow \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale}) \]

and

\[ f^{-1} = f_{small}^{-1} : \textit{Ab}(Y_{\acute{e}tale}) \longrightarrow \textit{Ab}(X_{\acute{e}tale}) \]

which are left adjoint to $f_* = f_{small, *}$. Thus $f^{-1}$ is characterized by the fact that

\[ \mathop{\mathrm{Hom}}\nolimits _{{\mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale})}} (f^{-1}\mathcal{G}, \mathcal{F}) = \mathop{\mathrm{Hom}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (Y_{\acute{e}tale})} (\mathcal{G}, f_*\mathcal{F}) \]

functorially, for any $\mathcal{F} \in \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale})$ and $\mathcal{G} \in \mathop{\mathit{Sh}}\nolimits (Y_{\acute{e}tale})$. We similarly have

\[ \mathop{\mathrm{Hom}}\nolimits _{{\textit{Ab}(X_{\acute{e}tale})}} (f^{-1}\mathcal{G}, \mathcal{F}) = \mathop{\mathrm{Hom}}\nolimits _{\textit{Ab}(Y_{\acute{e}tale})} (\mathcal{G}, f_*\mathcal{F}) \]

for $\mathcal{F} \in \textit{Ab}(X_{\acute{e}tale})$ and $\mathcal{G} \in \textit{Ab}(Y_{\acute{e}tale})$.

[1] We use the notation $f^{-1}$ for pullbacks of sheaves of sets or sheaves of abelian groups, and we reserve $f^*$ for pullbacks of sheaves of modules via a morphism of ringed sites/topoi.

Comments (0)

There are also:

  • 3 comment(s) on Section 59.36: Inverse image

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03Q0. Beware of the difference between the letter 'O' and the digit '0'.