Definition 59.36.1. Let f: X\to Y be a morphism of schemes. The inverse image, or pullback1 functors are the functors
f^{-1} = f_{small}^{-1} : \mathop{\mathit{Sh}}\nolimits (Y_{\acute{e}tale}) \longrightarrow \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale})
and
f^{-1} = f_{small}^{-1} : \textit{Ab}(Y_{\acute{e}tale}) \longrightarrow \textit{Ab}(X_{\acute{e}tale})
which are left adjoint to f_* = f_{small, *}. Thus f^{-1} is characterized by the fact that
\mathop{\mathrm{Hom}}\nolimits _{{\mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale})}} (f^{-1}\mathcal{G}, \mathcal{F}) = \mathop{\mathrm{Hom}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (Y_{\acute{e}tale})} (\mathcal{G}, f_*\mathcal{F})
functorially, for any \mathcal{F} \in \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale}) and \mathcal{G} \in \mathop{\mathit{Sh}}\nolimits (Y_{\acute{e}tale}). We similarly have
\mathop{\mathrm{Hom}}\nolimits _{{\textit{Ab}(X_{\acute{e}tale})}} (f^{-1}\mathcal{G}, \mathcal{F}) = \mathop{\mathrm{Hom}}\nolimits _{\textit{Ab}(Y_{\acute{e}tale})} (\mathcal{G}, f_*\mathcal{F})
for \mathcal{F} \in \textit{Ab}(X_{\acute{e}tale}) and \mathcal{G} \in \textit{Ab}(Y_{\acute{e}tale}).
Comments (0)
There are also: