The Stacks project

59.53 Stalks of higher direct images

The stalks of higher direct images can often be computed as follows.

Theorem 59.53.1. Let $f: X \to S$ be a quasi-compact and quasi-separated morphism of schemes, $\mathcal{F}$ an abelian sheaf on $X_{\acute{e}tale}$, and $\overline{s}$ a geometric point of $S$ lying over $s \in S$. Then

\[ \left(R^ nf_* \mathcal{F}\right)_{\overline{s}} = H_{\acute{e}tale}^ n( X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}\mathcal{F}) \]

where $p : X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}) \to X$ is the projection. For $K \in D^+(X_{\acute{e}tale})$ and $n \in \mathbf{Z}$ we have

\[ \left(R^ nf_*K\right)_{\overline{s}} = H_{\acute{e}tale}^ n(X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}K) \]

In fact, we have

\[ \left(Rf_*K\right)_{\overline{s}} = R\Gamma _{\acute{e}tale}(X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}K) \]

in $D^+(\textit{Ab})$.

Proof. Let $\mathcal{I}$ be the category of étale neighborhoods of $\overline{s}$ on $S$. By Lemma 59.51.6 we have

\[ (R^ nf_*\mathcal{F})_{\overline{s}} = \mathop{\mathrm{colim}}\nolimits _{(V, \overline{v}) \in \mathcal{I}^{opp}} H_{\acute{e}tale}^ n(X \times _ S V, \mathcal{F}|_{X \times _ S V}). \]

We may replace $\mathcal{I}$ by the initial subcategory consisting of affine étale neighbourhoods of $\overline{s}$. Observe that

\[ \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}) = \mathop{\mathrm{lim}}\nolimits _{(V, \overline{v}) \in \mathcal{I}} V \]

by Lemma 59.33.1 and Limits, Lemma 32.2.1. Since fibre products commute with limits we also obtain

\[ X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}) = \mathop{\mathrm{lim}}\nolimits _{(V, \overline{v}) \in \mathcal{I}} X \times _ S V \]

We conclude by Lemma 59.51.5. For the second variant, use the same argument using Lemma 59.52.3 instead of Lemma 59.51.5.

To see that the last statement is true, it suffices to produce a map $\left(Rf_*K\right)_{\overline{s}} \to R\Gamma _{\acute{e}tale}(X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}K)$ in $D^+(\textit{Ab})$ which realizes the ismorphisms on cohomology groups in degree $n$ above for all $n$. To do this, choose a bounded below complex $\mathcal{J}^\bullet $ of injective abelian sheaves on $X_{\acute{e}tale}$ representing $K$. The complex $f_*\mathcal{J}^\bullet $ represents $Rf_*K$. Thus the complex

\[ (f_*\mathcal{J}^\bullet )_{\overline{s}} = \mathop{\mathrm{colim}}\nolimits _{(V, \overline{v}) \in \mathcal{I}^{opp}} (f_*\mathcal{J}^\bullet )(V) \]

represents $(Rf_*K)_{\overline{s}}$. For each $V$ we have maps

\[ (f_*\mathcal{J}^\bullet )(V) = \Gamma (X \times _ S V, \mathcal{J}^\bullet ) \longrightarrow \Gamma (X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}\mathcal{J}^\bullet ) \]

and the target complex represents $R\Gamma _{\acute{e}tale}(X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}K)$ in $D^+(\textit{Ab})$. Taking the colimit of these maps we obtain the result. $\square$

Remark 59.53.2. Let $f : X \to S$ be a morphism of schemes. Let $K \in D(X_{\acute{e}tale})$. Let $\overline{s}$ be a geometric point of $S$. There are always canonical maps

\[ (Rf_*K)_{\overline{s}} \longrightarrow R\Gamma (X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}K) \longrightarrow R\Gamma (X_{\overline{s}}, K|_{X_{\overline{s}}}) \]

where $p : X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}) \to X$ is the projection. Namely, consider the commutative diagram

\[ \xymatrix{ X_{\overline{s}} \ar[r] \ar[d]^{f_{\overline{s}}} & X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}) \ar[r]_-p \ar[d]^{f'} & X \ar[d]^ f \\ \overline{s} \ar[r]^-i & \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}) \ar[r]^-j & S } \]

We have the base change maps

\[ i^{-1}Rf'_*(p^{-1}K) \to Rf_{\overline{s}, *}(K|_{X_{\overline{s}}}) \quad \text{and}\quad j^{-1}Rf_*K \to Rf'_*(p^{-1}K) \]

(Cohomology on Sites, Remark 21.19.3) for the two squares in this diagram. Taking global sections we obtain the desired maps. By Cohomology on Sites, Remark 21.19.5 the composition of these two maps is the usual (base change) map $(Rf_*K)_{\overline{s}} \to R\Gamma (X_{\overline{s}}, K|_{X_{\overline{s}}})$.


Comments (2)

Comment #2356 by Yu-Liang Huang on

Just a small suggestion: the projection and the index on cohomology are both denoted by , perhaps it's better to change one of them.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03Q7. Beware of the difference between the letter 'O' and the digit '0'.