Lemma 59.70.5 (Extension by zero commutes with base change). Let f: Y \to X be a morphism of schemes. Let j: V \to X be an étale morphism. Consider the fibre product
\xymatrix{ V' = Y \times _ X V \ar[d]_{f'} \ar[r]_-{j'} & Y \ar[d]^ f \\ V \ar[r]^ j & X }
Then we have j'_! f'^{-1} = f^{-1} j_! on abelian sheaves and on sheaves of modules.
Proof.
This is true because j'_! f'^{-1} is left adjoint to f'_* (j')^{-1} and f^{-1} j_! is left adjoint to j^{-1}f_*. Further f'_* (j')^{-1} = j^{-1}f_* because f_* commutes with étale localization (by construction). In fact, the lemma holds very generally in the setting of a morphism of sites, see Modules on Sites, Lemma 18.20.1.
\square
Comments (0)