Proposition 59.45.4 (Topological invariance of étale cohomology). Let $X_0 \to X$ be a universal homeomorphism of schemes (for example the closed immersion defined by a nilpotent sheaf of ideals). Then
the étale sites $X_{\acute{e}tale}$ and $(X_0)_{\acute{e}tale}$ are isomorphic,
the étale topoi $\mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale})$ and $\mathop{\mathit{Sh}}\nolimits ((X_0)_{\acute{e}tale})$ are equivalent, and
$H^ q_{\acute{e}tale}(X, \mathcal{F}) = H^ q_{\acute{e}tale}(X_0, \mathcal{F}|_{X_0})$ for all $q$ and for any abelian sheaf $\mathcal{F}$ on $X_{\acute{e}tale}$.
Comments (0)