Lemma 66.39.2. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. The following are equivalent:

1. $f$ is étale,

2. for every $x \in |X|$ the morphism $f$ is étale at $x$,

3. for every scheme $Z$ and any morphism $Z \to Y$ the morphism $Z \times _ Y X \to Z$ is étale,

4. for every affine scheme $Z$ and any morphism $Z \to Y$ the morphism $Z \times _ Y X \to Z$ is étale,

5. there exists a scheme $V$ and a surjective étale morphism $V \to Y$ such that $V \times _ Y X \to V$ is an étale morphism,

6. there exists a scheme $U$ and a surjective étale morphism $\varphi : U \to X$ such that the composition $f \circ \varphi$ is étale,

7. for every commutative diagram

$\xymatrix{ U \ar[d] \ar[r] & V \ar[d] \\ X \ar[r] & Y }$

where $U$, $V$ are schemes and the vertical arrows are étale the top horizontal arrow is étale,

8. there exists a commutative diagram

$\xymatrix{ U \ar[d] \ar[r] & V \ar[d] \\ X \ar[r] & Y }$

where $U$, $V$ are schemes, the vertical arrows are étale, and $U \to X$ surjective such that the top horizontal arrow is étale, and

9. there exist Zariski coverings $Y = \bigcup Y_ i$ and $f^{-1}(Y_ i) = \bigcup X_{ij}$ such that each morphism $X_{ij} \to Y_ i$ is étale.

Proof. Combine Properties of Spaces, Lemmas 65.16.3, 65.16.5 and 65.16.4. Some details omitted. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).