The Stacks project

Definition 73.7.1. Let $S$ be a scheme, and let $X$ be an algebraic space over $S$. An fppf covering of $X$ is a family of morphisms $\{ f_ i : X_ i \to X\} _{i \in I}$ of algebraic spaces over $S$ such that each $f_ i$ is flat and locally of finite presentation and such that

\[ |X| = \bigcup \nolimits _{i \in I} |f_ i|(|X_ i|), \]

i.e., the morphisms are jointly surjective.


Comments (1)

Comment #866 by on

It's a wee bit silly, but I think there should be a formal definition of "jointly surjective". While I'm at it, I wouldn't mind having a definition for "completely decomposed" too.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03Y8. Beware of the difference between the letter 'O' and the digit '0'.