Lemma 59.20.6. Let $\tau \in \{ fppf, syntomic, smooth, {\acute{e}tale}, Zariski\}$. Let $S$ be a scheme. Let $(\mathit{Sch}/S)_\tau$ and $(\mathit{Sch}'/S)_\tau$ be two big $\tau$-sites of $S$, and assume that the first is contained in the second. In this case

1. for any abelian sheaf $\mathcal{F}'$ defined on $(\mathit{Sch}'/S)_\tau$ and any object $U$ of $(\mathit{Sch}/S)_\tau$ we have

$H^ p_\tau (U, \mathcal{F}'|_{(\mathit{Sch}/S)_\tau }) = H^ p_\tau (U, \mathcal{F}')$

In words: the cohomology of $\mathcal{F}'$ over $U$ computed in the bigger site agrees with the cohomology of $\mathcal{F}'$ restricted to the smaller site over $U$.

2. for any abelian sheaf $\mathcal{F}$ on $(\mathit{Sch}/S)_\tau$ there is an abelian sheaf $\mathcal{F}'$ on $(\mathit{Sch}/S)_\tau '$ whose restriction to $(\mathit{Sch}/S)_\tau$ is isomorphic to $\mathcal{F}$.

Proof. By Topologies, Lemma 34.12.2 the inclusion functor $(\mathit{Sch}/S)_\tau \to (\mathit{Sch}'/S)_\tau$ satisfies the assumptions of Sites, Lemma 7.21.8. This implies (2) and (1) follows from Cohomology on Sites, Lemma 21.7.2. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).