Lemma 67.45.1. Let S be a scheme. Let f : X \to Y be a representable morphism of algebraic spaces over S. Then f is integral, resp. finite (in the sense of Section 67.3), if and only if for all affine schemes Z and morphisms Z \to Y the scheme X \times _ Y Z is affine and integral, resp. finite, over Z.
Proof. This follows directly from the definition of an integral (resp. finite) morphism of schemes (Morphisms, Definition 29.44.1). \square
Comments (0)