Lemma 21.6.1. Let $(\mathcal{C}, \mathcal{O})$ be a locally ringed site. There is a canonical isomorphism

of abelian groups.

Lemma 21.6.1. Let $(\mathcal{C}, \mathcal{O})$ be a locally ringed site. There is a canonical isomorphism

\[ H^1(\mathcal{C}, \mathcal{O}^*) = \mathop{\mathrm{Pic}}\nolimits (\mathcal{O}). \]

of abelian groups.

**Proof.**
Let $\mathcal{L}$ be an invertible $\mathcal{O}$-module. Consider the presheaf $\mathcal{L}^*$ defined by the rule

\[ U \longmapsto \{ s \in \mathcal{L}(U) \text{ such that } \mathcal{O}_ U \xrightarrow {s \cdot -} \mathcal{L}_ U \text{ is an isomorphism}\} \]

This presheaf satisfies the sheaf condition. Moreover, if $f \in \mathcal{O}^*(U)$ and $s \in \mathcal{L}^*(U)$, then clearly $fs \in \mathcal{L}^*(U)$. By the same token, if $s, s' \in \mathcal{L}^*(U)$ then there exists a unique $f \in \mathcal{O}^*(U)$ such that $fs = s'$. Moreover, the sheaf $\mathcal{L}^*$ has sections locally by Modules on Sites, Lemma 18.40.7. In other words we see that $\mathcal{L}^*$ is a $\mathcal{O}^*$-torsor. Thus we get a map

\[ \begin{matrix} \text{set of invertible sheaves on }(\mathcal{C}, \mathcal{O})
\\ \text{ up to isomorphism}
\end{matrix} \longrightarrow \begin{matrix} \text{set of }\mathcal{O}^*\text{-torsors}
\\ \text{ up to isomorphism}
\end{matrix} \]

We omit the verification that this is a homomorphism of abelian groups. By Lemma 21.4.3 the right hand side is canonically bijective to $H^1(\mathcal{C}, \mathcal{O}^*)$. Thus we have to show this map is injective and surjective.

Injective. If the torsor $\mathcal{L}^*$ is trivial, this means by Lemma 21.4.2 that $\mathcal{L}^*$ has a global section. Hence this means exactly that $\mathcal{L} \cong \mathcal{O}$ is the neutral element in $\mathop{\mathrm{Pic}}\nolimits (\mathcal{O})$.

Surjective. Let $\mathcal{F}$ be an $\mathcal{O}^*$-torsor. Consider the presheaf of sets

\[ \mathcal{L}_1 : U \longmapsto (\mathcal{F}(U) \times \mathcal{O}(U))/\mathcal{O}^*(U) \]

where the action of $f \in \mathcal{O}^*(U)$ on $(s, g)$ is $(fs, f^{-1}g)$. Then $\mathcal{L}_1$ is a presheaf of $\mathcal{O}$-modules by setting $(s, g) + (s', g') = (s, g + (s'/s)g')$ where $s'/s$ is the local section $f$ of $\mathcal{O}^*$ such that $fs = s'$, and $h(s, g) = (s, hg)$ for $h$ a local section of $\mathcal{O}$. We omit the verification that the sheafification $\mathcal{L} = \mathcal{L}_1^\# $ is an invertible $\mathcal{O}$-module whose associated $\mathcal{O}^*$-torsor $\mathcal{L}^*$ is isomorphic to $\mathcal{F}$. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)