The Stacks project

Lemma 77.17.1. Let $B \to S$ as in Section 77.3. Let $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $B$. Let $g : U' \to U$ be a morphism of algebraic spaces. Consider the following diagram

\[ \xymatrix{ R' \ar[d] \ar[r] \ar@/_3pc/[dd]_{t'} \ar@/^1pc/[rr]^{s'}& R \times _{s, U} U' \ar[r] \ar[d] & U' \ar[d]^ g \\ U' \times _{U, t} R \ar[d] \ar[r] & R \ar[r]^ s \ar[d]_ t & U \\ U' \ar[r]^ g & U } \]

where all the squares are fibre product squares. Then there is a canonical composition law $c' : R' \times _{s', U', t'} R' \to R'$ such that $(U', R', s', t', c')$ is a groupoid in algebraic spaces over $B$ and such that $U' \to U$, $R' \to R$ defines a morphism $(U', R', s', t', c') \to (U, R, s, t, c)$ of groupoids in algebraic spaces over $B$. Moreover, for any scheme $T$ over $B$ the functor of groupoids

\[ (U'(T), R'(T), s', t', c') \to (U(T), R(T), s, t, c) \]

is the restriction (see Groupoids, Section 39.18) of $(U(T), R(T), s, t, c)$ via the map $U'(T) \to U(T)$.

Proof. Omitted. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 044B. Beware of the difference between the letter 'O' and the digit '0'.