The Stacks project

Lemma 79.7.1. Let $B \to S$ be as in Section 79.2. Let $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $B$. Let $K$ be a field and let $r, r' : \mathop{\mathrm{Spec}}(K) \to R$ be morphisms such that $t \circ r = t \circ r' : \mathop{\mathrm{Spec}}(K) \to U$. Set $u = s \circ r$, $u' = s \circ r'$ and denote $F_ u = \mathop{\mathrm{Spec}}(K) \times _{u, U, s} R$ and $F_{u'} = \mathop{\mathrm{Spec}}(K) \times _{u', U, s} R$ the fibre products. Then $F_ u \cong F_{u'}$ as algebraic spaces over $K$.

Proof. We use the properties and the existence of Diagram (79.3.0.1). There exists a morphism $\xi : \mathop{\mathrm{Spec}}(K) \to R \times _{s, U, t} R$ with $\text{pr}_0 \circ \xi = r$ and $c \circ \xi = r'$. Let $\tilde r = \text{pr}_1 \circ \xi : \mathop{\mathrm{Spec}}(K) \to R$. Then looking at the bottom two squares of Diagram (79.3.0.1) we see that both $F_ u$ and $F_{u'}$ are identified with the algebraic space $\mathop{\mathrm{Spec}}(K) \times _{\tilde r, R, \text{pr}_1} (R \times _{s, U, t} R)$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0452. Beware of the difference between the letter 'O' and the digit '0'.