Loading web-font TeX/Math/Italic

The Stacks project

Lemma 83.5.20. Let B \to S as in Section 83.2. Let j = (t, s) : R \to U \times _ B U be a pre-relation. Assume R, U are locally of finite type over B. Let \phi : U \to X be an R-invariant morphism of algebraic spaces over B. Then \phi is an orbit space for R if and only if the natural map

U(k)/\big (\text{equivalence relation generated by }j(R(k))\big ) \longrightarrow X(k)

is bijective for all algebraically closed fields k over B.

Proof. Note that since U, R are locally of finite type over B all of the morphisms s, t, j, \phi are locally of finite type, see Morphisms of Spaces, Lemma 67.23.6. We will also use without further mention Morphisms of Spaces, Lemma 67.24.1. Assume \phi is an orbit space. Let k be any algebraically closed field over B. Let \overline{x} \in X(k). Consider U \times _{\phi , X, \overline{x}} \mathop{\mathrm{Spec}}(k). This is a nonempty algebraic space which is locally of finite type over k. Hence it has a k-valued point. This shows the displayed map of the lemma is surjective. Suppose that \overline{u}, \overline{u}' \in U(k) map to the same element of X(k). By Definition 83.5.8 this means that \overline{u}, \overline{u}' are in the same R-orbit. By Lemma 83.5.7 this means that they are equivalent under the equivalence relation generated by j(R(k)). Thus the displayed morphism is injective.

Conversely, assume the displayed map is bijective for all algebraically closed fields k over B. This condition clearly implies that \phi is surjective. We have already assumed that \phi is R-invariant. Finally, the injectivity of all the displayed maps implies that \phi separates orbits. Hence \phi is an orbit space. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.