Lemma 10.137.20. Let $R$ be a ring and let $I \subset R$ be an ideal. Let $R/I \to \overline{S}$ be a smooth ring map. Then there exists elements $\overline{g}_ i \in \overline{S}$ which generate the unit ideal of $\overline{S}$ such that each $\overline{S}_{g_ i} \cong S_ i/IS_ i$ for some (standard) smooth ring $S_ i$ over $R$.
Proof. By Lemma 10.137.10 we find a collection of elements $\overline{g}_ i \in \overline{S}$ which generate the unit ideal of $\overline{S}$ such that each $\overline{S}_{g_ i}$ is standard smooth over $R/I$. Hence we may assume that $\overline{S}$ is standard smooth over $R/I$. Write $\overline{S} = (R/I)[x_1, \ldots , x_ n]/(\overline{f}_1, \ldots , \overline{f}_ c)$ as in Definition 10.137.6. Choose $f_1, \ldots , f_ c \in R[x_1, \ldots , x_ n]$ lifting $\overline{f}_1, \ldots , \overline{f}_ c$. Set $S = R[x_1, \ldots , x_ n, x_{n + 1}]/(f_1, \ldots , f_ c, x_{n + 1}\Delta - 1)$ where $\Delta = \det (\frac{\partial f_ j}{\partial x_ i})_{i, j = 1, \ldots , c}$ as in Example 10.137.8. This proves the lemma. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #773 by Keenan Kidwell on