The Stacks project

Lemma 76.7.3. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Consider any commutative diagram

\[ \xymatrix{ U \ar[d]_ a \ar[r]_\psi & V \ar[d]^ b \\ X \ar[r]^ f & Y } \]

where the vertical arrows are ├ętale morphisms of algebraic spaces. Then

\[ \Omega _{X/Y}|_{U_{\acute{e}tale}} = \Omega _{U/V} \]

In particular, if $U$, $V$ are schemes, then this is equal to the usual sheaf of differentials of the morphism of schemes $U \to V$.

Proof. By Properties of Spaces, Lemma 66.18.11 and Equation ( we may think of the restriction of a sheaf on $X_{\acute{e}tale}$ to $U_{\acute{e}tale}$ as the pullback by $a_{small}$. Similarly for $b$. By Modules on Sites, Lemma 18.33.6 we have

\[ \Omega _{X/Y}|_{U_{\acute{e}tale}} = \Omega _{\mathcal{O}_{U_{\acute{e}tale}}/ a_{small}^{-1}f_{small}^{-1}\mathcal{O}_{Y_{\acute{e}tale}}} \]

Since $a_{small}^{-1}f_{small}^{-1}\mathcal{O}_{Y_{\acute{e}tale}} = \psi _{small}^{-1}b_{small}^{-1}\mathcal{O}_{Y_{\acute{e}tale}} = \psi _{small}^{-1}\mathcal{O}_{V_{\acute{e}tale}}$ we see that the lemma holds. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04CU. Beware of the difference between the letter 'O' and the digit '0'.