Loading web-font TeX/Math/Italic

The Stacks project

Lemma 76.7.6. Let S be a scheme. Let

\xymatrix{ X' \ar[d] \ar[r]_ f & X \ar[d] \\ Y' \ar[r] & Y }

be a commutative diagram of algebraic spaces. The map f^\sharp : \mathcal{O}_ X \to f_*\mathcal{O}_{X'} composed with the map f_*\text{d}_{X'/Y'} : f_*\mathcal{O}_{X'} \to f_*\Omega _{X'/Y'} is a Y-derivation. Hence we obtain a canonical map of \mathcal{O}_ X-modules \Omega _{X/Y} \to f_*\Omega _{X'/Y'}, and by adjointness of f_* and f^* a canonical \mathcal{O}_{X'}-module homomorphism

c_ f : f^*\Omega _{X/Y} \longrightarrow \Omega _{X'/Y'}.

It is uniquely characterized by the property that f^*\text{d}_{X/Y}(t) mapsto \text{d}_{X'/Y'}(f^* t) for any local section t of \mathcal{O}_ X.

Proof. This is a special case of Modules on Sites, Lemma 18.33.11. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.