Lemma 76.7.6. Let S be a scheme. Let
be a commutative diagram of algebraic spaces. The map f^\sharp : \mathcal{O}_ X \to f_*\mathcal{O}_{X'} composed with the map f_*\text{d}_{X'/Y'} : f_*\mathcal{O}_{X'} \to f_*\Omega _{X'/Y'} is a Y-derivation. Hence we obtain a canonical map of \mathcal{O}_ X-modules \Omega _{X/Y} \to f_*\Omega _{X'/Y'}, and by adjointness of f_* and f^* a canonical \mathcal{O}_{X'}-module homomorphism
It is uniquely characterized by the property that f^*\text{d}_{X/Y}(t) mapsto \text{d}_{X'/Y'}(f^* t) for any local section t of \mathcal{O}_ X.
Comments (0)