Lemma 10.143.10. Let $R$ be a ring and let $I \subset R$ be an ideal. Let $R/I \to \overline{S}$ be an étale ring map. Then there exists an étale ring map $R \to S$ such that $\overline{S} \cong S/IS$ as $R/I$-algebras.

** Étale ring maps lift along surjections of rings **

**Proof.**
By Lemma 10.143.2 we can write $\overline{S} = (R/I)[x_1, \ldots , x_ n]/(\overline{f}_1, \ldots , \overline{f}_ n)$ as in Definition 10.137.6 with $\overline{\Delta } = \det (\frac{\partial \overline{f}_ i}{\partial x_ j})_{i, j = 1, \ldots , n}$ invertible in $\overline{S}$. Just take some lifts $f_ i$ and set $S = R[x_1, \ldots , x_ n, x_{n+1}]/(f_1, \ldots , f_ n, x_{n + 1}\Delta - 1)$ where $\Delta = \det (\frac{\partial f_ i}{\partial x_ j})_{i, j = 1, \ldots , n}$ as in Example 10.137.8. This proves the lemma.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (3)

Comment #2452 by Matthieu Romagny on

Comment #2494 by Johan on

Comment #5376 by slogan_bot on