Lemma 37.7.9. Let $h : Z \to X$ be a formally unramified morphism of schemes over $S$. Let $Z \subset Z'$ be the universal first order thickening of $Z$ over $X$ with structure morphism $h' : Z' \to X$. The canonical map

\[ c_{h'} : (h')^*\Omega _{X/S} \longrightarrow \Omega _{Z'/S} \]

induces an isomorphism $h^*\Omega _{X/S} \to \Omega _{Z'/S} \otimes \mathcal{O}_ Z$.

**Proof.**
The map $c_{h'}$ is the map defined in Morphisms, Lemma 29.32.8. If $i : Z \to Z'$ is the given closed immersion, then $i^*c_{h'}$ is a map $h^*\Omega _{X/S} \to \Omega _{Z'/S} \otimes \mathcal{O}_ Z$. Checking that it is an isomorphism reduces to the affine case by localization, see Lemma 37.7.8 and Morphisms, Lemma 29.32.3. In this case the result is Algebra, Lemma 10.149.5.
$\square$

## Comments (0)