Lemma 10.155.10. Let $R \to S$ be a local map of local rings. Choose separable algebraic closures $R/\mathfrak m_ R \subset \kappa _1^{sep}$ and $S/\mathfrak m_ S \subset \kappa _2^{sep}$. Let $R \to R^{sh}$ and $S \to S^{sh}$ be the corresponding strict henselizations. Given any commutative diagram

$\xymatrix{ \kappa _1^{sep} \ar[r]_{\phi } & \kappa _2^{sep} \\ R/\mathfrak m_ R \ar[r]^{\varphi } \ar[u] & S/\mathfrak m_ S \ar[u] }$

There exists a unique local ring map $R^{sh} \to S^{sh}$ fitting into the commutative diagram

$\xymatrix{ R^{sh} \ar[r]_ f & S^{sh} \\ R \ar[u] \ar[r] & S \ar[u] }$

and inducing $\phi$ on the residue fields of $R^{sh}$ and $S^{sh}$.

Proof. Follows immediately from Lemma 10.154.6. $\square$

There are also:

• 8 comment(s) on Section 10.155: Henselization and strict henselization

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).