Lemma 18.40.12. Localization of locally ringed sites and topoi.
Let (\mathcal{C}, \mathcal{O}) be a locally ringed site. Let U be an object of \mathcal{C}. Then the localization (\mathcal{C}/U, \mathcal{O}_ U) is a locally ringed site, and the localization morphism
(j_ U, j_ U^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U), \mathcal{O}_ U) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})is a morphism of locally ringed topoi.
Let (\mathcal{C}, \mathcal{O}) be a locally ringed site. Let f : V \to U be a morphism of \mathcal{C}. Then the morphism
(j, j^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/V), \mathcal{O}_ V) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U), \mathcal{O}_ U)of Lemma 18.19.5 is a morphism of locally ringed topoi.
Let (f, f^\sharp ) : (\mathcal{C}, \mathcal{O}) \longrightarrow (\mathcal{D}, \mathcal{O}') be a morphism of locally ringed sites where f is given by the continuous functor u : \mathcal{D} \to \mathcal{C}. Let V be an object of \mathcal{D} and let U = u(V). Then the morphism
(f', (f')^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U), \mathcal{O}_ U) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}/V), \mathcal{O}'_ V)of Lemma 18.20.1 is a morphism of locally ringed sites.
Let (f, f^\sharp ) : (\mathcal{C}, \mathcal{O}) \longrightarrow (\mathcal{D}, \mathcal{O}') be a morphism of locally ringed sites where f is given by the continuous functor u : \mathcal{D} \to \mathcal{C}. Let V \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D}), U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}), and c : U \to u(V). Then the morphism
(f_ c, (f_ c)^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U), \mathcal{O}_ U) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}/V), \mathcal{O}'_ V)of Lemma 18.20.2 is a morphism of locally ringed topoi.
Let (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) be a locally ringed topos. Let \mathcal{F} be a sheaf on \mathcal{C}. Then the localization (\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{F}, \mathcal{O}_\mathcal {F}) is a locally ringed topos and the localization morphism
(j_\mathcal {F}, j_\mathcal {F}^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{F}, \mathcal{O}_\mathcal {F}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})is a morphism of locally ringed topoi.
Let (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) be a locally ringed topos. Let s : \mathcal{G} \to \mathcal{F} be a map of sheaves on \mathcal{C}. Then the morphism
(j, j^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{G}, \mathcal{O}_\mathcal {G}) \longrightarrow (\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{F}, \mathcal{O}_\mathcal {F})of Lemma 18.21.4 is a morphism of locally ringed topoi.
Let f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \longrightarrow (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}') be a morphism of locally ringed topoi. Let \mathcal{G} be a sheaf on \mathcal{D}. Set \mathcal{F} = f^{-1}\mathcal{G}. Then the morphism
(f', (f')^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{F}, \mathcal{O}_\mathcal {F}) \longrightarrow (\mathop{\mathit{Sh}}\nolimits (\mathcal{D})/\mathcal{G}, \mathcal{O}'_\mathcal {G})of Lemma 18.22.1 is a morphism of locally ringed topoi.
Let f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \longrightarrow (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}') be a morphism of locally ringed topoi. Let \mathcal{G} be a sheaf on \mathcal{D}, let \mathcal{F} be a sheaf on \mathcal{C}, and let s : \mathcal{F} \to f^{-1}\mathcal{G} be a morphism of sheaves. Then the morphism
(f_ s, (f_ s)^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{F}, \mathcal{O}_\mathcal {F}) \longrightarrow (\mathop{\mathit{Sh}}\nolimits (\mathcal{D})/\mathcal{G}, \mathcal{O}'_\mathcal {G})of Lemma 18.22.3 is a morphism of locally ringed topoi.
Comments (0)