The Stacks project

18.31 Flat morphisms

Definition 18.31.1. Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \longrightarrow (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ be a morphism of ringed topoi. We say $(f, f^\sharp )$ is flat if the ring map $f^\sharp : f^{-1}\mathcal{O}' \to \mathcal{O}$ is flat. We say a morphism of ringed sites is flat if the associated morphism of ringed topoi is flat.

Lemma 18.31.2. Let $f : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}')$ be a morphism of ringed topoi. Then

\[ f^{-1} : \textit{Ab}(\mathcal{C}') \longrightarrow \textit{Ab}(\mathcal{C}), \quad \mathcal{F} \longmapsto f^{-1}\mathcal{F} \]

is exact. If $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ is a flat morphism of ringed topoi then

\[ f^* : \textit{Mod}(\mathcal{O}') \longrightarrow \textit{Mod}(\mathcal{O}), \quad \mathcal{F} \longmapsto f^*\mathcal{F} \]

is exact.

Proof. Given an abelian sheaf $\mathcal{G}$ on $\mathcal{C}'$ the underlying sheaf of sets of $f^{-1}\mathcal{G}$ is the same as $f^{-1}$ of the underlying sheaf of sets of $\mathcal{G}$, see Sites, Section 7.44. Hence the exactness of $f^{-1}$ for sheaves of sets (required in the definition of a morphism of topoi, see Sites, Definition 7.15.1) implies the exactness of $f^{-1}$ as a functor on abelian sheaves.

To see the statement on modules recall that $f^*\mathcal{F}$ is defined as the tensor product $f^{-1}\mathcal{F} \otimes _{f^{-1}\mathcal{O}', f^\sharp } \mathcal{O}$. Hence $f^*$ is a composition of functors both of which are exact. $\square$

Definition 18.31.3. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}')$ be a morphism of ringed topoi. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}$-modules. We say that $\mathcal{F}$ is flat over $(\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}')$ if $\mathcal{F}$ is flat as an $f^{-1}\mathcal{O}'$-module.

This is compatible with the notion as defined for morphisms of ringed spaces, see Modules, Definition 17.20.3 and the discussion following.

Lemma 18.31.4. Let $f : (\mathcal{C}, \mathcal{O}_\mathcal {C}) \to (\mathcal{D}, \mathcal{O}_\mathcal {D})$ be a morphism of ringed sites. Let $\mathcal{F}$, $\mathcal{G}$ be $\mathcal{O}_\mathcal {D}$-modules. If $\mathcal{F}$ is finitely presented and $f$ is flat, then the canonical map

\[ f^*\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {D}}(\mathcal{F}, \mathcal{G}) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {C}}(f^*\mathcal{F}, f^*\mathcal{G}) \]

of Remark 18.27.3 is an isomorphism.

Proof. Say $f$ is given by the continuous functor $u : \mathcal{D} \to \mathcal{C}$. We have to show that the restriction of the map to $\mathcal{C}/U$ for any $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ is an isomorphism. We may replace $U$ by the members of a covering of $U$. Hence by Sites, Lemma 7.14.10 we may assume there exists a morphism $U \to u(V)$ for some $V \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. Of course, then we may replace $U$ by $u(V)$. Then since $u$ is continuous, we may replace $V$ by a covering and assume there is a presentation $\mathcal{O}_ V^{\oplus m} \to \mathcal{O}_ V^{\oplus n} \to \mathcal{F}|_ V \to 0$ over $\mathcal{D}/V$. Since formation of $\mathop{\mathcal{H}\! \mathit{om}}\nolimits $ commutes with localization (Lemma 18.27.2) we may replace $f$ by the morphism $(\mathcal{C}/u(V), \mathcal{O}_{u(V)}) \to (\mathcal{D}/V, \mathcal{O}_ V)$ induced by $f$. Hence we reduce to the case where $\mathcal{F}$ has a global presentation $\mathcal{O}_\mathcal {D}^{\oplus m} \to \mathcal{O}_\mathcal {D}^{\oplus n} \to \mathcal{F} \to 0$. Since $f$ is flat and $f^*\mathcal{O}_\mathcal {D} = \mathcal{O}_\mathcal {C}$ we obtain a corresponding presentation $\mathcal{O}_\mathcal {C}^{\oplus m} \to \mathcal{O}_\mathcal {C}^{\oplus n} \to f^*\mathcal{F} \to 0$, see Lemma 18.31.2. Using that $\mathop{\mathcal{H}\! \mathit{om}}\nolimits $ commutes with finite direct sums in the first variable, using that both $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {C}}(\mathcal{O}_\mathcal {C}, -)$ and $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {D}}(\mathcal{O}_\mathcal {D}, -)$ are the identity functor, and using the functoriality of the construction of Remark 18.27.3 we obtain a commutative diagram

\[ \xymatrix{ 0 \ar[r] & f^*\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {D}}(\mathcal{F}, \mathcal{G}) \ar[d] \ar[r] & f^*\mathcal{G}^{\oplus n} \ar[d] \ar[r] & f^*\mathcal{G}^{\oplus n} \ar[d] \\ 0 \ar[r] & \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {C}}(f^*\mathcal{F}, f^*\mathcal{G}) \ar[r] & f^*\mathcal{G}^{\oplus n} \ar[r] & f^*\mathcal{G}^{\oplus n} } \]

where the right two vertical arrows are isomorphisms. By Lemma 18.27.5 the rows are exact. We conclude by the 5 lemma. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04JA. Beware of the difference between the letter 'O' and the digit '0'.