The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 54.55.5. Assumptions and notations as in Theorem 54.55.3. There is a functorial bijection

\[ \Gamma (S, \mathcal{F}) = (\mathcal{F}_{\overline{s}})^ G \]

Proof. We can prove this using formal arguments and the result of Theorem 54.55.3 as follows. Given a sheaf $\mathcal{F}$ corresponding to the $G$-set $M = \mathcal{F}_{\overline{s}}$ we have

\begin{eqnarray*} \Gamma (S, \mathcal{F}) & = & \mathop{Mor}\nolimits _{\mathop{\mathit{Sh}}\nolimits (S_{\acute{e}tale})}(h_{\mathop{\mathrm{Spec}}(K)}, \mathcal{F}) \\ & = & \mathop{Mor}\nolimits _{G\textit{-Sets}}(\{ *\} , M) \\ & = & M^ G \end{eqnarray*}

Here the first identification is explained in Sites, Sections 7.2 and 7.12, the second results from Theorem 54.55.3 and the third is clear. We will also give a direct proof1.

Suppose that $t \in \Gamma (S, \mathcal{F})$ is a global section. Then the triple $(S, \overline{s}, t)$ defines an element of $\mathcal{F}_{\overline{s}}$ which is clearly invariant under the action of $G$. Conversely, suppose that $(U, \overline{u}, t)$ defines an element of $\mathcal{F}_{\overline{s}}$ which is invariant. Then we may shrink $U$ and assume $U = \mathop{\mathrm{Spec}}(L)$ for some finite separable field extension of $K$, see Proposition 54.26.2. In this case the map $\mathcal{F}(U) \to \mathcal{F}_{\overline{s}}$ is injective, because for any morphism of étale neighbourhoods $(U', \overline{u}') \to (U, \overline{u})$ the restriction map $\mathcal{F}(U) \to \mathcal{F}(U')$ is injective since $U' \to U$ is a covering of $S_{\acute{e}tale}$. After enlarging $L$ a bit we may assume $K \subset L$ is a finite Galois extension. At this point we use that

\[ \mathop{\mathrm{Spec}}(L) \times _{\mathop{\mathrm{Spec}}(K)} \mathop{\mathrm{Spec}}(L) = \coprod \nolimits _{\sigma \in \text{Gal}(L/K)} \mathop{\mathrm{Spec}}(L) \]

where the maps $\mathop{\mathrm{Spec}}(L) \to \mathop{\mathrm{Spec}}(L \otimes _ K L)$ come from the ring maps $a \otimes b \mapsto a\sigma (b)$. Hence we see that the condition that $(U, \overline{u}, t)$ is invariant under all of $G$ implies that $t \in \mathcal{F}(\mathop{\mathrm{Spec}}(L))$ maps to the same element of $\mathcal{F}(\mathop{\mathrm{Spec}}(L) \times _{\mathop{\mathrm{Spec}}(K)} \mathop{\mathrm{Spec}}(L))$ via restriction by either projection (this uses the injectivity mentioned above; details omitted). Hence the sheaf condition of $\mathcal{F}$ for the étale covering $\{ \mathop{\mathrm{Spec}}(L) \to \mathop{\mathrm{Spec}}(K)\} $ kicks in and we conclude that $t$ comes from a unique section of $\mathcal{F}$ over $\mathop{\mathrm{Spec}}(K)$. $\square$

[1] For the doubting Thomases out there.

Comments (2)

Comment #3198 by Dario Weißmann on

Typo in the second equality of the short proof: '' should have no bracket.

There are also:

  • 2 comment(s) on Section 54.55: Galois action on stalks

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04JM. Beware of the difference between the letter 'O' and the digit '0'.