The Stacks project

Lemma 66.19.9. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.

  1. The functor $f_{small}^{-1} : \textit{Ab}(Y_{\acute{e}tale}) \to \textit{Ab}(X_{\acute{e}tale})$ is exact.

  2. The functor $f_{small}^{-1} : \mathop{\mathit{Sh}}\nolimits (Y_{\acute{e}tale}) \to \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale})$ is exact, i.e., it commutes with finite limits and colimits, see Categories, Definition 4.23.1.

  3. For any étale morphism $V \to Y$ of algebraic spaces we have $f_{small}^{-1}h_ V = h_{X \times _ Y V}$.

  4. Let $\overline{x} \to X$ be a geometric point. Let $\mathcal{G}$ be a sheaf on $Y_{\acute{e}tale}$. Then there is a canonical identification

    \[ (f_{small}^{-1}\mathcal{G})_{\overline{x}} = \mathcal{G}_{\overline{y}}. \]

    where $\overline{y} = f \circ \overline{x}$.

Proof. Recall that $f_{small}$ is defined via $f_{spaces, small}$ in Lemma 66.18.8. Parts (1), (2) and (3) are general consequences of the fact that $f_{spaces, {\acute{e}tale}} : X_{spaces, {\acute{e}tale}} \to Y_{spaces, {\acute{e}tale}}$ is a morphism of sites, see Sites, Definition 7.14.1 for (2), Modules on Sites, Lemma 18.31.2 for (1), and Sites, Lemma 7.13.5 for (3).

Proof of (4). This statement is a special case of Sites, Lemma 7.34.2 via Lemma 66.19.7. We also provide a direct proof. Note that by Lemma 66.19.8. taking stalks commutes with sheafification. Let $\mathcal{G}'$ be the sheaf on $Y_{spaces, {\acute{e}tale}}$ whose restriction to $Y_{\acute{e}tale}$ is $\mathcal{G}$. Recall that $f_{spaces, {\acute{e}tale}}^{-1}\mathcal{G}'$ is the sheaf associated to the presheaf

\[ U \longrightarrow \mathop{\mathrm{colim}}\nolimits _{U \to X \times _ Y V} \mathcal{G}'(V), \]

see Sites, Sections 7.13 and 7.5. Thus we have

\begin{align*} (f_{spaces, {\acute{e}tale}}^{-1}\mathcal{G}')_{\overline{x}} & = \mathop{\mathrm{colim}}\nolimits _{(U, \overline{u})} f_{spaces, {\acute{e}tale}}^{-1}\mathcal{G}'(U) \\ & = \mathop{\mathrm{colim}}\nolimits _{(U, \overline{u})} \mathop{\mathrm{colim}}\nolimits _{a : U \to X \times _ Y V} \mathcal{G}'(V) \\ & = \mathop{\mathrm{colim}}\nolimits _{(V, \overline{v})} \mathcal{G}'(V) \\ & = \mathcal{G}'_{\overline{y}} \end{align*}

in the third equality the pair $(U, \overline{u})$ and the map $a : U \to X \times _ Y V$ corresponds to the pair $(V, a \circ \overline{u})$. Since the stalk of $\mathcal{G}'$ (resp. $f_{spaces, {\acute{e}tale}}^{-1}\mathcal{G}'$) agrees with the stalk of $\mathcal{G}$ (resp. $f_{small}^{-1}\mathcal{G}$), see Equation (66.19.6.1) the result follows. $\square$


Comments (0)

There are also:

  • 4 comment(s) on Section 66.19: Points of the small étale site

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04K2. Beware of the difference between the letter 'O' and the digit '0'.