**Proof.**
Recall that $f_{small}$ is defined via $f_{spaces, small}$ in Lemma 65.18.8. Parts (1), (2) and (3) are general consequences of the fact that $f_{spaces, {\acute{e}tale}} : X_{spaces, {\acute{e}tale}} \to Y_{spaces, {\acute{e}tale}}$ is a morphism of sites, see Sites, Definition 7.14.1 for (2), Modules on Sites, Lemma 18.31.2 for (1), and Sites, Lemma 7.13.5 for (3).

Proof of (4). This statement is a special case of Sites, Lemma 7.34.2 via Lemma 65.19.7. We also provide a direct proof. Note that by Lemma 65.19.8. taking stalks commutes with sheafification. Let $\mathcal{G}'$ be the sheaf on $Y_{spaces, {\acute{e}tale}}$ whose restriction to $Y_{\acute{e}tale}$ is $\mathcal{G}$. Recall that $f_{spaces, {\acute{e}tale}}^{-1}\mathcal{G}'$ is the sheaf associated to the presheaf

\[ U \longrightarrow \mathop{\mathrm{colim}}\nolimits _{U \to X \times _ Y V} \mathcal{G}'(V), \]

see Sites, Sections 7.13 and 7.5. Thus we have

\begin{align*} (f_{spaces, {\acute{e}tale}}^{-1}\mathcal{G}')_{\overline{x}} & = \mathop{\mathrm{colim}}\nolimits _{(U, \overline{u})} f_{spaces, {\acute{e}tale}}^{-1}\mathcal{G}'(U) \\ & = \mathop{\mathrm{colim}}\nolimits _{(U, \overline{u})} \mathop{\mathrm{colim}}\nolimits _{a : U \to X \times _ Y V} \mathcal{G}'(V) \\ & = \mathop{\mathrm{colim}}\nolimits _{(V, \overline{v})} \mathcal{G}'(V) \\ & = \mathcal{G}'_{\overline{y}} \end{align*}

in the third equality the pair $(U, \overline{u})$ and the map $a : U \to X \times _ Y V$ corresponds to the pair $(V, a \circ \overline{u})$. Since the stalk of $\mathcal{G}'$ (resp. $f_{spaces, {\acute{e}tale}}^{-1}\mathcal{G}'$) agrees with the stalk of $\mathcal{G}$ (resp. $f_{small}^{-1}\mathcal{G}$), see Equation (65.19.6.1) the result follows.
$\square$

## Comments (0)

There are also: