Lemma 33.8.13. Let k be a field, with separable algebraic closure \overline{k}. Let X be a scheme over k. The fibres of the map
of Lemma 33.8.10 are exactly the orbits of \text{Gal}(\overline{k}/k) under the action of Lemma 33.8.12.
Lemma 33.8.13. Let k be a field, with separable algebraic closure \overline{k}. Let X be a scheme over k. The fibres of the map
of Lemma 33.8.10 are exactly the orbits of \text{Gal}(\overline{k}/k) under the action of Lemma 33.8.12.
Proof. Let T \subset X be an irreducible component of X. Let \eta \in T be its generic point. By Lemmas 33.8.9 and 33.8.10 the generic points of irreducible components of \overline{T} which map into T map to \eta . By Algebra, Lemma 10.47.14 the Galois group acts transitively on all of the points of X_{\overline{k}} mapping to \eta . Hence the lemma follows. \square
Comments (0)
There are also: