Lemma 33.8.13. Let $k$ be a field, with separable algebraic closure $\overline{k}$. Let $X$ be a scheme over $k$. The fibres of the map
of Lemma 33.8.10 are exactly the orbits of $\text{Gal}(\overline{k}/k)$ under the action of Lemma 33.8.12.
Lemma 33.8.13. Let $k$ be a field, with separable algebraic closure $\overline{k}$. Let $X$ be a scheme over $k$. The fibres of the map
of Lemma 33.8.10 are exactly the orbits of $\text{Gal}(\overline{k}/k)$ under the action of Lemma 33.8.12.
Proof. Let $T \subset X$ be an irreducible component of $X$. Let $\eta \in T$ be its generic point. By Lemmas 33.8.9 and 33.8.10 the generic points of irreducible components of $\overline{T}$ which map into $T$ map to $\eta $. By Algebra, Lemma 10.47.14 the Galois group acts transitively on all of the points of $X_{\overline{k}}$ mapping to $\eta $. Hence the lemma follows. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: