Proof.
Choose a commutative diagram
\[ \xymatrix{ U \ar[d]_ a \ar[r]_ h & V \ar[d]^ b \\ X \ar[r]^ f & Y } \]
where $U$ and $V$ are schemes, $a, b$ are étale, and $u \in U$ mapping to $x$. We can find a geometric point $\overline{u} : \mathop{\mathrm{Spec}}(k) \to U$ lying over $u$ with $\overline{x} = a \circ \overline{u}$, see Properties of Spaces, Lemma 66.19.4. Set $\overline{v} = h \circ \overline{u}$ with image $v \in V$. We know that
\[ \mathcal{O}_{X, \overline{x}} = \mathcal{O}_{U, u}^{sh} \quad \text{and}\quad \mathcal{O}_{Y, \overline{y}} = \mathcal{O}_{V, v}^{sh} \]
see Properties of Spaces, Lemma 66.22.1. We obtain a commutative diagram
\[ \xymatrix{ \mathcal{O}_{U, u} \ar[r] & \mathcal{O}_{X, \overline{x}} \\ \mathcal{O}_{V, v} \ar[u] \ar[r] & \mathcal{O}_{Y, \overline{y}} \ar[u] } \]
of local rings with flat horizontal arrows. We have to show that the left vertical arrow is flat if and only if the right vertical arrow is. Algebra, Lemma 10.39.9 tells us $\mathcal{O}_{U, u}$ is flat over $\mathcal{O}_{V, v}$ if and only if $\mathcal{O}_{X, \overline{x}}$ is flat over $\mathcal{O}_{V, v}$. Hence the result follows from More on Flatness, Lemma 38.2.5.
$\square$
Comments (0)
There are also: