The Stacks project

Lemma 65.34.2. Let $S$ be a scheme. Let $f : X \to Y$ and $g : Y \to Z$ be morphisms of algebraic spaces over $S$. Let $x \in |X|$ and set $y = f(x)$. Assume $f$ and $g$ locally of finite type. Then

  1. \[ \begin{matrix} \text{relative dimension of }g \circ f\text{ at }x \\ \leq \\ \text{relative dimension of }f\text{ at }x \\ + \\ \text{relative dimension of }g\text{ at }y \end{matrix} \]
  2. equality holds in (1) if for some morphism $\mathop{\mathrm{Spec}}(k) \to Z$ from the spectrum of a field in the class of $g(f(x)) = g(y)$ the morphism $X_ k \to Y_ k$ is flat at $x$, for example if $f$ is flat at $x$,

  3. \[ \begin{matrix} \text{transcendence degree of }x/g(f(x)) \\ = \\ \text{transcendence degree of }x/f(x) \\ + \\ \text{transcendence degree of }f(x)/g(f(x)) \end{matrix} \]

Proof. Choose a diagram

\[ \xymatrix{ U \ar[d] \ar[r] & V \ar[d] \ar[r] & W \ar[d] \\ X \ar[r] & Y \ar[r] & Z } \]

with $U, V, W$ schemes and vertical arrows ├ętale and surjective. (See Spaces, Lemma 63.11.6.) Choose $u \in U$ mapping to $x$. Set $v, w$ equal to the images of $u$ in $V, W$. Apply Morphisms, Lemma 29.28.2 to the top row and the points $u, v, w$. Details omitted. $\square$


Comments (2)

Comment #534 by Kestutis Cesnavicius on

'The' --> 'the'


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04NR. Beware of the difference between the letter 'O' and the digit '0'.