The Stacks project

79.3 Useful diagrams

We briefly restate the results of Groupoids in Spaces, Lemmas 78.11.4 and 78.11.5 for easy reference in this chapter. Let $S$ be a scheme. Let $B$ be an algebraic space over $S$. Let $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $B$. In the commutative diagram

79.3.0.1
\begin{equation} \label{spaces-more-groupoids-equation-diagram} \vcenter { \xymatrix{ & U & \\ R \ar[d]_ s \ar[ru]^ t & R \times _{s, U, t} R \ar[l]^-{\text{pr}_0} \ar[d]^{\text{pr}_1} \ar[r]_-c & R \ar[d]^ s \ar[lu]_ t \\ U & R \ar[l]_ t \ar[r]^ s & U } } \end{equation}

the two lower squares are fibre product squares. Moreover, the triangle on top (which is really a square) is also cartesian.

The diagram

79.3.0.2
\begin{equation} \label{spaces-more-groupoids-equation-pull} \vcenter { \xymatrix{ R \times _{t, U, t} R \ar@<1ex>[r]^-{\text{pr}_1} \ar@<-1ex>[r]_-{\text{pr}_0} \ar[d]_{\text{pr}_0 \times c \circ (i, 1)} & R \ar[r]^ t \ar[d]^{\text{id}_ R} & U \ar[d]^{\text{id}_ U} \\ R \times _{s, U, t} R \ar@<1ex>[r]^-c \ar@<-1ex>[r]_-{\text{pr}_0} \ar[d]_{\text{pr}_1} & R \ar[r]^ t \ar[d]^ s & U \\ R \ar@<1ex>[r]^ s \ar@<-1ex>[r]_ t & U } } \end{equation}

is commutative. The two top rows are isomorphic via the vertical maps given. The two lower left squares are cartesian.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04P8. Beware of the difference between the letter 'O' and the digit '0'.