## 79.3 Useful diagrams

We briefly restate the results of Groupoids in Spaces, Lemmas 78.11.4 and 78.11.5 for easy reference in this chapter. Let $S$ be a scheme. Let $B$ be an algebraic space over $S$. Let $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $B$. In the commutative diagram

79.3.0.1
\begin{equation} \label{spaces-more-groupoids-equation-diagram} \vcenter { \xymatrix{ & U & \\ R \ar[d]_ s \ar[ru]^ t & R \times _{s, U, t} R \ar[l]^-{\text{pr}_0} \ar[d]^{\text{pr}_1} \ar[r]_-c & R \ar[d]^ s \ar[lu]_ t \\ U & R \ar[l]_ t \ar[r]^ s & U } } \end{equation}

the two lower squares are fibre product squares. Moreover, the triangle on top (which is really a square) is also cartesian.

The diagram

79.3.0.2
\begin{equation} \label{spaces-more-groupoids-equation-pull} \vcenter { \xymatrix{ R \times _{t, U, t} R \ar@<1ex>[r]^-{\text{pr}_1} \ar@<-1ex>[r]_-{\text{pr}_0} \ar[d]_{\text{pr}_0 \times c \circ (i, 1)} & R \ar[r]^ t \ar[d]^{\text{id}_ R} & U \ar[d]^{\text{id}_ U} \\ R \times _{s, U, t} R \ar@<1ex>[r]^-c \ar@<-1ex>[r]_-{\text{pr}_0} \ar[d]_{\text{pr}_1} & R \ar[r]^ t \ar[d]^ s & U \\ R \ar@<1ex>[r]^ s \ar@<-1ex>[r]_ t & U } } \end{equation}

is commutative. The two top rows are isomorphic via the vertical maps given. The two lower left squares are cartesian.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).