Theorem 94.17.3. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $(U, R, s, t, c)$ be a smooth groupoid in algebraic spaces over $S$. Then the quotient stack $[U/R]$ is an algebraic stack over $S$.
Proof. We check the three conditions of Definition 94.12.1. By construction we have that $[U/R]$ is a stack in groupoids which is the first condition.
The second condition follows from the stronger Lemma 94.17.1.
Finally, we have to show there exists a scheme $W$ over $S$ and a surjective smooth $1$-morphism $(\mathit{Sch}/W)_{fppf} \longrightarrow \mathcal{X}$. First choose $W \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf})$ and a surjective étale morphism $W \to U$. Note that this gives a surjective étale morphism $\mathcal{S}_ W \to \mathcal{S}_ U$ of categories fibred in sets, see Lemma 94.10.3. Of course then $\mathcal{S}_ W \to \mathcal{S}_ U$ is also surjective and smooth, see Lemma 94.10.9. Hence $\mathcal{S}_ W \to \mathcal{S}_ U \to [U/R]$ is surjective and smooth by a combination of Lemmas 94.17.2 and 94.10.5. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)