The Stacks project

Definition 74.3.1. Let $S$ be a scheme. Let $\{ f_ i : X_ i \to X\} _{i \in I}$ be a family of morphisms of algebraic spaces over $S$ with fixed target $X$.

  1. A descent datum $(\mathcal{F}_ i, \varphi _{ij})$ for quasi-coherent sheaves with respect to the given family is given by a quasi-coherent sheaf $\mathcal{F}_ i$ on $X_ i$ for each $i \in I$, an isomorphism of quasi-coherent $\mathcal{O}_{X_ i \times _ X X_ j}$-modules $\varphi _{ij} : \text{pr}_0^*\mathcal{F}_ i \to \text{pr}_1^*\mathcal{F}_ j$ for each pair $(i, j) \in I^2$ such that for every triple of indices $(i, j, k) \in I^3$ the diagram

    \[ \xymatrix{ \text{pr}_0^*\mathcal{F}_ i \ar[rd]_{\text{pr}_{01}^*\varphi _{ij}} \ar[rr]_{\text{pr}_{02}^*\varphi _{ik}} & & \text{pr}_2^*\mathcal{F}_ k \\ & \text{pr}_1^*\mathcal{F}_ j \ar[ru]_{\text{pr}_{12}^*\varphi _{jk}} & } \]

    of $\mathcal{O}_{X_ i \times _ X X_ j \times _ X X_ k}$-modules commutes. This is called the cocycle condition.

  2. A morphism $\psi : (\mathcal{F}_ i, \varphi _{ij}) \to (\mathcal{F}'_ i, \varphi '_{ij})$ of descent data is given by a family $\psi = (\psi _ i)_{i\in I}$ of morphisms of $\mathcal{O}_{X_ i}$-modules $\psi _ i : \mathcal{F}_ i \to \mathcal{F}'_ i$ such that all the diagrams

    \[ \xymatrix{ \text{pr}_0^*\mathcal{F}_ i \ar[r]_{\varphi _{ij}} \ar[d]_{\text{pr}_0^*\psi _ i} & \text{pr}_1^*\mathcal{F}_ j \ar[d]^{\text{pr}_1^*\psi _ j} \\ \text{pr}_0^*\mathcal{F}'_ i \ar[r]^{\varphi '_{ij}} & \text{pr}_1^*\mathcal{F}'_ j \\ } \]

    commute.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04W3. Beware of the difference between the letter 'O' and the digit '0'.