Lemma 65.24.2. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.

1. If $X$ is locally Noetherian then $|X|$ is a locally Noetherian topological space.

2. If $X$ is quasi-compact and locally Noetherian, then $|X|$ is a Noetherian topological space.

Proof. Assume $X$ is locally Noetherian. Choose a scheme $U$ and a surjective étale morphism $U \to X$. As $X$ is locally Noetherian we see that $U$ is locally Noetherian. By Properties, Lemma 28.5.5 this means that $|U|$ is a locally Noetherian topological space. Since $|U| \to |X|$ is open and surjective we conclude that $|X|$ is locally Noetherian by Topology, Lemma 5.9.3. This proves (1). If $X$ is quasi-compact and locally Noetherian, then $|X|$ is quasi-compact and locally Noetherian. Hence $|X|$ is Noetherian by Topology, Lemma 5.12.14. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).