Lemma 67.4.11. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
If $X$ is separated then $X$ is separated over $S$.
If $X$ is locally separated then $X$ is locally separated over $S$.
If $X$ is quasi-separated then $X$ is quasi-separated over $S$.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
If $X$ is separated over $S$ then $f$ is separated.
If $X$ is locally separated over $S$ then $f$ is locally separated.
If $X$ is quasi-separated over $S$ then $f$ is quasi-separated.
Comments (0)