Lemma 10.101.1. Let $(R, \mathfrak m)$ be a local ring with nilpotent maximal ideal $\mathfrak m$. Let $M$ be a flat $R$-module. If $A$ is a set and $x_\alpha \in M$, $\alpha \in A$ is a collection of elements of $M$, then the following are equivalent:

1. $\{ \overline{x}_\alpha \} _{\alpha \in A}$ forms a basis for the vector space $M/\mathfrak mM$ over $R/\mathfrak m$, and

2. $\{ x_\alpha \} _{\alpha \in A}$ forms a basis for $M$ over $R$.

Proof. The implication (2) $\Rightarrow$ (1) is immediate. Assume (1). By Nakayama's Lemma 10.20.1 the elements $x_\alpha$ generate $M$. Then one gets a short exact sequence

$0 \to K \to \bigoplus \nolimits _{\alpha \in A} R \to M \to 0$

Tensoring with $R/\mathfrak m$ and using Lemma 10.39.12 we obtain $K/\mathfrak mK = 0$. By Nakayama's Lemma 10.20.1 we conclude $K = 0$. $\square$

Comment #3621 by JuanPablo on

Alternative proof: $x_{\alpha}$ generate $M$ by Nakayama's Lemma 00DV. Then one gets a short exact sequence $0\to K\to \bigoplus_{\alpha\in A}R\to M\to 0$. Then one tensors by $R/\mathfrak{m}$ and by Lemma 00HL one gets $K=\mathfrak{m}K$. Then by Nakayama's Lemma 00DV one gets $K=0$.

There are also:

• 2 comment(s) on Section 10.101: Flatness criteria over Artinian rings

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).