Lemma 10.101.1. Let $(R, \mathfrak m)$ be a local ring with nilpotent maximal ideal $\mathfrak m$. Let $M$ be a flat $R$-module. If $A$ is a set and $x_\alpha \in M$, $\alpha \in A$ is a collection of elements of $M$, then the following are equivalent:
$\{ \overline{x}_\alpha \} _{\alpha \in A}$ forms a basis for the vector space $M/\mathfrak mM$ over $R/\mathfrak m$, and
$\{ x_\alpha \} _{\alpha \in A}$ forms a basis for $M$ over $R$.
Comments (2)
Comment #3621 by JuanPablo on
Comment #3724 by Johan on
There are also: