Lemma 10.50.4. Let $A \subset K$ be a subring of a field $K$ such that for all $x \in K$ either $x \in A$ or $x^{-1} \in A$ or both. Then $A$ is a valuation ring with fraction field $K$.

**Proof.**
If $A$ is not $K$, then $A$ is not a field and there is a nonzero maximal ideal $\mathfrak m$. If $\mathfrak m'$ is a second maximal ideal, then choose $x, y \in A$ with $x \in \mathfrak m$, $y \not\in \mathfrak m$, $x \not\in \mathfrak m'$, and $y \in \mathfrak m'$ (see Lemma 10.15.2). Then neither $x/y \in A$ nor $y/x \in A$ contradicting the assumption of the lemma. Thus we see that $A$ is a local ring. Suppose that $A'$ is a local ring contained in $K$ which dominates $A$. Let $x \in A'$. We have to show that $x \in A$. If not, then $x^{-1} \in A$, and of course $x^{-1} \in \mathfrak m_ A$. But then $x^{-1} \in \mathfrak m_{A'}$ which contradicts $x \in A'$.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: