The Stacks project

Lemma 10.50.3. Let $A$ be a valuation ring with maximal ideal $\mathfrak m$ and fraction field $K$. Let $x \in K$. Then either $x \in A$ or $x^{-1} \in A$ or both.

Proof. Assume that $x$ is not in $A$. Let $A'$ denote the subring of $K$ generated by $A$ and $x$. Since $A$ is a valuation ring we see that there is no prime of $A'$ lying over $\mathfrak m$. Since $\mathfrak m$ is maximal we see that $V(\mathfrak m A') = \emptyset $. Then $\mathfrak m A' = A'$ by Lemma 10.17.2. Hence we can write $1 = \sum _{i = 0}^ d t_ i x^ i$ with $t_ i \in \mathfrak m$. This implies that $(1 - t_0) (x^{-1})^ d - \sum t_ i (x^{-1})^{d - i} = 0$. In particular we see that $x^{-1}$ is integral over $A$. Thus the subring $A''$ of $K$ generated by $A$ and $x^{-1}$ is finite over $A$ and we see there exists a prime ideal $\mathfrak m'' \subset A''$ lying over $\mathfrak m$ by Lemma 10.36.17. Since $A$ is a valuation ring we conclude that $A = (A'')_{\mathfrak m''}$ and hence $x^{-1} \in A$. $\square$

Comments (5)

Comment #42 by Rankeya on

Let be a subring of should be let be a subring of .

Comment #2365 by Dominic Wynter on

Is it accurate to assume that in the expression , for all , or do we just know that ? I have only succeeded in proving that second statement (and in fact that second statement is all that is necessary).

Comment #2428 by on

Thanks for your question. I have clarified the argument. See here.

Comment #7895 by Mingchen on

This is not a big deal, but strictly speaking, one should say for any non-zero , blabla as you talk about . The same issue persists in the next lemma.

There are also:

  • 3 comment(s) on Section 10.50: Valuation rings

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00IB. Beware of the difference between the letter 'O' and the digit '0'.