Lemma 29.50.7. Let $S$ be a scheme. Let $X$ and $Y$ be integral schemes locally of finite type over $S$. Let $x \in X$ and $y \in Y$ be the generic points. The following are equivalent

1. $X$ and $Y$ are $S$-birational,

2. there exist nonempty opens of $X$ and $Y$ which are $S$-isomorphic, and

3. $x$ and $y$ map to the same point $s \in S$ and $\kappa (x) \cong \kappa (y)$ as $\kappa (s)$-extensions.

Proof. We have seen the equivalence of (1) and (2) in Lemma 29.49.12. It is immediate that (2) implies (3). To finish we assume (3) holds and we prove (1). Observe that $\mathcal{O}_{X, x} = \kappa (x)$ and $\mathcal{O}_{Y, y} = \kappa (y)$ by Algebra, Lemma 10.25.1. By Lemma 29.49.2 there is a rational map $f : U \to Y$ which sends $x \in U$ to $y$ and induces the given isomorphism $\mathcal{O}_{Y, y} \cong \mathcal{O}_{X, x}$. Thus $f$ is a birational morphism and hence induces an isomorphism on nonempty opens by Lemma 29.50.5. This finishes the proof. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0552. Beware of the difference between the letter 'O' and the digit '0'.