Lemma 36.34.6. Let $f : X \to S$ be a smooth morphism of schemes. Let $s \in S$ be a point in the image of $f$. Then there exists an étale neighbourhood $(S', s') \to (S, s)$ and a $S$-morphism $S' \to X$.

**First proof of Lemma 36.34.6.**
By assumption $X_ s \not= \emptyset $. By Varieties, Lemma 32.25.6 there exists a closed point $x \in X_ s$ such that $\kappa (x)$ is a finite separable field extension of $\kappa (s)$. Hence by Lemma 36.34.5 there exists an immersion $Z \to X$ such that $Z \to S$ is étale and such that $x \in Z$. Take $(S' , s') = (Z, x)$.
$\square$

**Second proof of Lemma 36.34.6.**
Pick a point $x \in X$ with $f(x) = s$. Choose a diagram

with $\pi $ étale, $x \in U$ and $V = \mathop{\mathrm{Spec}}(R)$ affine, see Morphisms, Lemma 28.34.20. In particular $s \in V$. The morphism $\pi : U \to \mathbf{A}^ d_ V$ is open, see Morphisms, Lemma 28.34.13. Thus $W = \pi (V) \cap \mathbf{A}^ d_ s$ is a nonempty open subset of $\mathbf{A}^ d_ s$. Let $w \in W$ be a point with $\kappa (s) \subset \kappa (w)$ finite separable, see Varieties, Lemma 32.25.5. By Algebra, Lemma 10.113.1 there exist $d$ elements $\overline{f}_1, \ldots , \overline{f}_ d \in \kappa (s)[x_1, \ldots , x_ d]$ which generate the maximal ideal corresponding to $w$ in $\kappa (s)[x_1, \ldots , x_ d]$. After replacing $R$ by a principal localization we may assume there are $f_1, \ldots , f_ d \in R[x_1, \ldots , x_ d]$ which map to $\overline{f}_1, \ldots , \overline{f}_ d \in \kappa (s)[x_1, \ldots , x_ d]$. Consider the $R$-algebra

and set $S' = \mathop{\mathrm{Spec}}(R')$. By construction we have a closed immersion $j : S' \to \mathbf{A}^ d_ V$ over $V$. By construction the fibre of $S' \to V$ over $s$ is a single point $s'$ whose residue field is finite separable over $\kappa (s)$. Let $\mathfrak q' \subset R'$ be the corresponding prime. By Algebra, Lemma 10.134.11 we see that $(R')_ g$ is a relative global complete intersection over $R$ for some $g \in R'$, $g \not\in \mathfrak q$. Thus $S' \to V$ is flat and of finite presentation in a neighbourhood of $s'$, see Algebra, Lemma 10.134.14. By construction the scheme theoretic fibre of $S' \to V$ over $s$ is $\mathop{\mathrm{Spec}}(\kappa (s'))$. Hence it follows from Morphisms, Lemma 28.34.15 that $S' \to S$ is étale at $s'$. Set

By construction there exists a point $s'' \in S''$ which maps to $s'$ via the projection $p : S'' \to S'$. Note that $p$ is étale as the base change of the étale morphism $\pi $, see Morphisms, Lemma 28.34.4. Choose a small affine neighbourhood $S''' \subset S''$ of $s''$ which maps into the nonempty open neighbourhood of $s' \in S'$ where the morphism $S' \to S$ is étale. Then the étale neighbourhood $(S''', s'') \to (S, s)$ is a solution to the problem posed by the lemma. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #3822 by Johannes Anschuetz on

Comment #3925 by Johan on