Lemma 31.5.4. Let X be a scheme. Let 0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0 be a short exact sequence of quasi-coherent sheaves on X. Then \text{WeakAss}(\mathcal{F}_2) \subset \text{WeakAss}(\mathcal{F}_1) \cup \text{WeakAss}(\mathcal{F}_3) and \text{WeakAss}(\mathcal{F}_1) \subset \text{WeakAss}(\mathcal{F}_2).
Proof. For every point x \in X the sequence of stalks 0 \to \mathcal{F}_{1, x} \to \mathcal{F}_{2, x} \to \mathcal{F}_{3, x} \to 0 is a short exact sequence of \mathcal{O}_{X, x}-modules. Hence the lemma follows from Algebra, Lemma 10.66.4. \square
Comments (0)
There are also: