Processing math: 100%

The Stacks project

Lemma 31.5.4. Let X be a scheme. Let 0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0 be a short exact sequence of quasi-coherent sheaves on X. Then \text{WeakAss}(\mathcal{F}_2) \subset \text{WeakAss}(\mathcal{F}_1) \cup \text{WeakAss}(\mathcal{F}_3) and \text{WeakAss}(\mathcal{F}_1) \subset \text{WeakAss}(\mathcal{F}_2).

Proof. For every point x \in X the sequence of stalks 0 \to \mathcal{F}_{1, x} \to \mathcal{F}_{2, x} \to \mathcal{F}_{3, x} \to 0 is a short exact sequence of \mathcal{O}_{X, x}-modules. Hence the lemma follows from Algebra, Lemma 10.66.4. \square


Comments (0)

There are also:

  • 4 comment(s) on Section 31.5: Weakly associated points

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.