Lemma 33.25.9. Let $k$ be a field. Let $f : X \to Y$ be a morphism of schemes locally of finite type over $k$. Let $x \in X$ be a point and set $y = f(x)$. If $X \to \mathop{\mathrm{Spec}}(k)$ is smooth at $x$ and $f$ is flat at $x$ then $Y \to \mathop{\mathrm{Spec}}(k)$ is smooth at $y$. In particular, if $X$ is smooth over $k$ and $f$ is flat and surjective, then $Y$ is smooth over $k$.

**Proof.**
It suffices to show that $Y$ is geometrically regular at $y$, see Lemma 33.12.6. This follows from Lemma 33.12.5 (and Lemma 33.12.6 applied to $(X, x)$).
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)